1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
11

The length of a rectangle is 5 metres less than twice the breadth. If the perimeter is 50 meters,find the length and breadth

Mathematics
1 answer:
MAXImum [283]3 years ago
7 0
<h3><u>S</u><u> </u><u>O</u><u> </u><u>L</u><u> </u><u>U</u><u> </u><u>T</u><u> </u><u>I</u><u> </u><u>O</u><u> </u><u>N</u><u> </u><u>:</u></h3>

As per the given question, it is stated that the length of a rectangle is 5 m less than twice the breadth.

Assumption : Let us assume the length as "l" and width as "b". So,

\twoheadrightarrow \quad\sf{ Length =2(Width)-5}

\twoheadrightarrow \quad\sf{ \ell=(2b-5) \; m}

Also, we are given that the perimeter of the rectangle is 50 m. Basically, we need to apply here the formula of perimeter of rectangle which will act as a linear equation here.

\\ \twoheadrightarrow \quad\sf{ Perimeter_{(Rectangle)} = 2(\ell +b) } \\

  • <em>l</em> denotes length
  • <em>b</em> denotes breadth

\\ \twoheadrightarrow \quad\sf{50= 2(2b-5+b)} \\

\\ \twoheadrightarrow \quad\sf{50= 2(3b-5)} \\

\\ \twoheadrightarrow \quad\sf{50= 6b - 10} \\

\\ \twoheadrightarrow \quad\sf{50+10= 6b} \\

\\ \twoheadrightarrow \quad\sf{60= 6b} \\

\\ \twoheadrightarrow \quad\sf{\cancel{\dfrac{60}{6}}=b} \\

\\ \twoheadrightarrow \quad\underline{\bf{10\; m = Width }} \\

Now, finding the length. According to the question,

\twoheadrightarrow \quad\sf{ \ell=(2b-5) \; m}

\twoheadrightarrow \quad\sf{ \ell=2(10)-5\; m}

\twoheadrightarrow \quad\sf{ \ell=20-5\; m}

\\ \twoheadrightarrow \quad\underline{\bf{15\; m = Length }} \\

<u>Therefore</u><u>,</u><u> </u><u>length</u><u> </u><u>and</u><u> </u><u>breadth</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>r</u><u>ectangle</u><u> </u><u>is</u><u> </u><u>1</u><u>5</u><u> </u><u>m</u><u> </u><u>and</u><u> </u><u>10</u><u> </u><u>m</u><u>.</u><u> </u>

You might be interested in
The length of a rectangle is 17 m and the width is 12 m what is the perimeter of the rectangle
lbvjy [14]

Answer:

<h2>The answer is 58 m</h2>

Step-by-step explanation:

Perimeter of a rectangle = 2l + 2w

where

l is the length

w is the width

From the question

length = 17 m

width = 12 m

Substitute the values into the above formula and solve for the perimeter

We have

Perimeter = 2(17) + 2(12)

= 34 + 24

We have the final answer as

<h3>58 m</h3>

Hope this helps you

5 0
3 years ago
Apply the distributive property using the greatest common factor to write an equivalent expression. Enter your answers in the bo
Lilit [14]

Solution:

0.3 × 2.7

Using Distributive property of multiplication with respect to subtraction the value of multiplication of two rationals or two decimals

⇒0.3 × (3-0.3)

⇒ 0.3 × 3 - 0.3 × 0.3

⇒ 0.9 - 0.09

= 0.81

H C F of 0.3 and 2.7 is 0.3.

The Equivalent of product of 0.3 × 2.7 are

1.→0.9 × 0.9

2.→→ 3 × 0.27

5 0
3 years ago
Ramp 10 feet high and 32 long
madam [21]

A. IMA = 32/10 = 3.2

8 0
3 years ago
Read 2 more answers
Please help!<br> thankjs
olga_2 [115]

Answer:

20th: 100 nth: 5

Step-by-step explanation:

the table is multiplying by 5

so 5 × 20 = 100

8 0
3 years ago
It cost Hudson $28.20 to send 188 text messages. How much would it cost to send 63 text messages? Good luck!
frosja888 [35]

Answer:

$9.45

Step-by-step explanation:

1.  First, you want to figure out how much one text message costs.  To do this, divide the dollar amount (28.20) by the number of text messages (188).  You get 0.15, or $0.15 per text message.

2. Using this $0.15 per text message, you can calculate how much 63 text messages costs.  You simply multiply $0.15 by 63 to get $9.45, which is your answer.

Hope this helps! :)

3 0
3 years ago
Other questions:
  • Please help thanks will mark brainliest
    12·2 answers
  • Given : cos(θ)= -4/5 | sin x = -12/13<br> Evaluate: cos(θ + x)
    9·1 answer
  • 20 POINTS Congratulations, you just got a job! The company you are working for gave you a $50 signing bonus, and you are being p
    5·2 answers
  • What is the central limit theorem?
    15·1 answer
  • Help meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
    8·1 answer
  • Solve this one please​
    11·1 answer
  • En una oficina hay 96 computadores en total. La razón entre los computadores que deben ser reparados y aquellos que se encuentra
    11·1 answer
  • Can someone plz help me so sorry
    8·2 answers
  • Use the properties of the definite integral to find
    11·2 answers
  • 2πr²+πrh=S<br> Solve for r
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!