In order to solve this problem, you will need to use a type of operation. You can do long division which will be 678 divided 4 and it will give you 169 remainder 5.<span />
Answer:
266.5y
Step-by-step explanation:
120.5y+80.5y+65.5y
201y+65.5y
266.5y
------------------------------------------------------
Option A
------------------------------------------------------
------------------------------------------------------
Check if slope = 2
------------------------------------------------------
y + 2 = 2(x + 3)
y + 1 = 2x + 6
y = 2x + 6 - 1
y = 2x + 5
Slope = 2
Answer: Yes, Slope is 2
------------------------------------------------------
Check if it passed through (2, 3)
------------------------------------------------------
When x = 2
y = 2(2) + 5
y = 9
Answer: No, it does not passed through (2, 3)
------------------------------------------------------
Option B
------------------------------------------------------
------------------------------------------------------
Check if Slope is 2
------------------------------------------------------
y - 3 = 2(x - 2)
y - 3 = 2x - 4
y = 2x - 4 + 3
y = 2x - 1
Slope = 2
Ans : Yes, slope is 2.
------------------------------------------------------
Check if it passed through (2, 3)
------------------------------------------------------
when x = 2
y = 2(2) - 1
y = 4 - 1
y = 3
Answer : Yes, it passed through (2, 3)
------------------------------------------------------
Answer: (B) <span>y – 3 = 2(x – 2)
</span>------------------------------------------------------
1) Sketching it
Since the line segment AD = 10x -5 and AC= 3x +1 and CD= 15
According to the Segment Addition postulate we can write:
3x+1+15=10x-5 <em>Combining like terms</em>
3x +16 = 10x -5 <em>Subtract 16 from both sides</em>
3x = 10x-5-16 Subtract 10x from both sides
3x-10x =-21
-7x = -21
7x=21 <em>Dividing by 7 on both sides</em>
x=3
If you would like to know the value of 'c' in the quadratic equation, you can find this using the following steps:
3x^2 + 5x + 7 = 0
ax^2 + bx + c = 0<span>
a = 3
b = 5
c = 7
The correct result would be 7.</span>