Oxygen, carbon dioxide and your mom
Answer:
Thanks for you question. Your hypothesis suggests a linear relationship between serum Cholesterol levels and MI. This hypothesis seems to ignore the difference in the prevalence and effectiveness of LDL receptors in the FH patient.
FH patients who have inherited the mutation from both parents have very few LDL receptors in their blood and therefore almost no ability to pass the unused Cholesterol through the liver. FH patients who are heterozygous will have more LDL receptors although both will find Cholesterol removal problematic without the addition of a PCSK9 inhibitor.
In short, your hypothesis need to account for other factors that are in play.
Explanation:
Consider my case. I am a 64 year old male who has Heterozygous Familial Hypercholesterolemia. Before treatment at age 12 my Total cholesterol was 510 mg/dl. My genetic testing shows two mutations to the LDL Receptor gene with only one mutation being pathogenic. My first heart attack was at 47 and first stroke at 62. My current LDL is too low to detect with the use of a PCSK9 inhibitor (Repatha®).
Answer:
Generally, mammals have a pair of bran-shaped kidneys. The mammalian kidney has 2 distinct regions, an outer renal cortex and inner renal medulla. Both regions are packed with microscopic excretory tubules, nephrons, and their associated blood vessels. Each nephron consists of a single long tubule and a ball of capillaries, known as glomerulus. The blind end of the tubule forms a cup-shaped swelling called Bowman’s capsule, that surround the glomerulus. From Bowman’s capsule, the filtrate passes through 3 regions of the nephron which are proximal tubule, the loop of Henle. A hairpin turns with a descending limb and an ascending limb and the distal tubule. The distal tubule empties into a collecting duct, which receives processed filtrate from many nephrons. The many collecting ducts empty into the renal pelvis, which is drained by ureter.
For the structure of nephron, each nephron is supplied with blood by an afferent arteriole, a branch of the renal artery that subdivides into the capillaries of the glomerulus. The capillaries converge as they leave the glomerulus, forming an efferent arteriole. It is surrounded by the Bowman’s capsule. The double-walled epithelial Bowman’s capsule is formed by the invagination of the blind end of the nephron. The glomerulus and Bowman’s capsule form the first region of the nephron and is known as the renal corpuscle or the Malpighian body. The capillary walls are composed of a single layer of endothelial cells with openings between them with a diameter 50-100nm. These cells are pressed up against basement membrane which completely envelops each capillary, separating the blood in the capillary from the lumen of Bowman’s capsule. The inner layer of the Bowman’s capsule is composed of a cell called podocytes which have arms that give off structures resembling tube-feet called foot processes or secondary processes. The secondary processes support the basement membrane and capillaries beneath it and gaps between the processes (slit pores) facilitate the process of filtration. The Malpighian body leads into the remainder of the tubule.
The use of highlighting pens can increase your understanding of a text by: Helping you stay focused, as well as helping you to keep track of the most important part of a text.
<h3>Meaning and use of a Highlighting pen</h3>
A highlighting pen as the name implies is a pen with a unique feature used for marking a particular word, group of words and sentences to stand out in a page.
The highlighting pen is used for so many things in schools, churches, and organization these include: Marking a page, noting a key word, marking a word is yet to be understood etc.
In conclusion, The use of highlighting pens can increase your understanding of a text by: Helping you stay focused, as well as helping you to keep track of the most important part of a text.
Learn more about Highlighting pen : brainly.com/question/245311
#SPJ1
Answer:
commensalism
Explanation:
Commensalism is a type of ecological interaction between two species in which one speices benefits while other is unaffected. Commensalism also can be considered as a type of symbiosis-two species that live together. The interaction between human and its microbiota is beneficial for microbiota while it has no effects on humans.
Although, some bacteria (gut bacteria) can help in digestion. In this case, interaction with human is mutualism (both have benefits).