Answer:
0.125 = 12.5% probability that they are a great match now.
Step-by-step explanation:
To solve this question, we need the probability of a person being a great match, which i will use 0.1.
This question is solved using conditional probability.
Conditional Probability
We use the conditional probability formula to solve this question. It is

In which
P(B|A) is the probability of event B happening, given that A happened.
is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Is kind to animals.
Event B: Is a great match.
Probability of being kind to animals:
0.9 of 0.1(Is a great match).
0.7 of 1 - 0.1 = 0.9(is not a great match). So

Probability of being kind to animals and a great match:
0.9 of 0.1. So

What is the probability that they are a great match now?

0.125 = 12.5% probability that they are a great match now.