Answer:
Step-by-step explanation:
General form of quadratic equation:
ax^2+bx+c=0
ax^2+bx=-c
To complete the square, we will divide the coefficient of x in the general quadratic equation as written above and divide by 2
I'm the question;
x^2-20x+13=0
x^2-20x=-13
The coefficient of x =-20
Divide the coefficient by 2 and square the result afterwards
-20/2= - 10
(-10)^2= 100
Add 100 to both sides of the equation
x^2-20x+100=-13+100
x^2-20x+100=87
x^2-10x-10x+100=87
x(x-10)-10(x-10)=87
(x-10)(x-10)=87
(x-10)^2=87
Answer is 10,87
Answer:
y = /1/4x/
Hope that this helped! Good luck!
7b / 12 = 4.2
multiply both sides by 12
7b = 50.4
divide both sides by 7 to isolate b
b = 7.2
Answer:
El perímetro del triángulo rectángulo es aproximadamente 29.627.
Step-by-step explanation:
Las coordendas de los vértices del triángulo rectángulo son
,
y
. En primer lugar, determinamos las longitudes de los segmentos AB, BC y AC por el Teorema de Pitágoras:
![AB = \sqrt{(-8-1)^{2}+[4-(-2)]^{2}}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B%28-8-1%29%5E%7B2%7D%2B%5B4-%28-2%29%5D%5E%7B2%7D%7D)

![BC = \sqrt{[5-(-8)]^{2}+(2-4)^{2}}](https://tex.z-dn.net/?f=BC%20%3D%20%5Csqrt%7B%5B5-%28-8%29%5D%5E%7B2%7D%2B%282-4%29%5E%7B2%7D%7D)

![AC =\sqrt{(5-1)^{2}+[2-(-2)]^{2}}](https://tex.z-dn.net/?f=AC%20%3D%5Csqrt%7B%285-1%29%5E%7B2%7D%2B%5B2-%28-2%29%5D%5E%7B2%7D%7D)

El perímetro del triángulo (
) es la suma de todos estos segmentos:


El perímetro del triángulo rectángulo es aproximadamente 29.627.