<u>Answer</u><u>:</u>
— What is (g × h)(x)?
<em>The</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>3x²</em><em>+</em><em>x-2</em>
— What is g(k(x))?
<em>The</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>12x</em><em> </em><em>-</em><em> </em><em>2</em><em> </em><em>or</em><em> </em><em>2</em><em>(</em><em>6x-1</em><em>)</em>
<em>—</em><em> </em>What is k(g(0))
<em>The</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>-</em><em /><em>8</em>
<u>Explanation:</u>
Given these functions —

<u>Find</u><u> </u><u>(</u><u>g</u><u> </u><u>×</u><u> </u><u>h</u><u>)</u><u>(</u><u>x</u><u>)</u><u />

Substitute g(x) = 3x - 2 and h(x) = x + 1

Multiply the polynomial.

Subtract - 2x out of 3x —

Thus, the answer is —

<u>Find</u><u> </u><u>(</u><u>g</u><u>(</u><u>k</u><u>(</u><u>x</u><u>)</u><u>)</u><u />
Substitute k(x) = 4x in g(x).



Distribute 3 in 4x —

Thus the answer is —

<u>Alternative</u><u> </u><u>Solution</u>

<u>Find</u><u> </u><u>k</u><u>(</u><u>g</u><u>(</u><u>0</u><u>)</u><u>)</u>
Given two functions — k(x) and g(x)

Evaluate the value of g(0) as we substitute x = 0 in g(x)

Since we need to find k(g(0)), our currently input is g(0).
From k(x) and g(0) —

Substitute g(0) = -2 in k(x)

Thus, the answer is —
