The given quadrilateral ABCD is a parallelogram since the opposite sides are of same length AB and DC is 4 and AD and BC is 2.
<u>Step-by-step explanation</u>:
ABCD is a quadrilateral with their opposite sides are congruent (equal).
The both pairs of opposite sides are given as AB = 3 + x
, DC = 4x
, AD = y + 1
, BC = 2y.
- AB and DC are opposite sides and have same measure of length.
- AD and BC are opposite sides and have same measure of length.
<u>To find the length of AB and DC :</u>
AB = DC
3 + x = 4x
Keep x terms on one side and constant on other side.
3 = 4x - x
3 = 3x
x = 1
Substiute x=1 in AB and DC,
AB = 3+1 = 4
DC = 4(1) = 4
<u>To find the length of AD and BC :</u>
AD = BC
y + 1 = 2y
Keep y terms on one side and constant on other side.
2y-y = 1
y = 1
Substiute y=1 in AD and BC,
AD = 1+1 = 2
BC = 2(1) = 2
Therefore, the opposite sides are of same length AB and DC is 4 and AD and BC is 2. The given quadrilateral ABCD is a parallelogram.
Answer:
The data that we have is:
"Adrian's backyard pool contains 6.4 gallons of water. Adrian will begin filling his pool at a rate of 4.1 gallons per second."
Then we can write the amount of water in Adrian's pool as a linear function:
A(t) = 6.4gal + (4.1gal/s)*t
Where t is our variable and represents time in seconds.
We also know that:
"Dale's backyard pool contains 66.4 gallons of water. Dale will begin draining his pool at a rate of 0.9 gallons per second. "
We can also model this with a linear function:
D(t) = 66.4 gal + (0.9gal/s)*t
Both pools will have the same amount of water when:
D(t) = A(t)
So we can find the value of t:
6.4gal + (4.1gal/s)*t = 66.4 gal + (0.9gal/s)*t
(4.1gal/s)*t - (0.9gal/s)*t = 66.4gal - 6.4gal
(3.2gal/s)*t = 60gal
t = 60gal/(3.2gal/s) = 18.75s
In 18.75 seconds both pools will have the same amount of water.
Answer:
$140.90
Step-by-step explanation:
**22% = 0.22**
X = 109.90 / (1 - 0.22)
X = 109.90 / 0.78
X = 140.90
Answer:
a) one solution
b) no solution
Step-by-step explanation:
Systems of equations can be described as having one solution, no solution or infinite solutions:
One solution: 'x' and 'y' are equal to only one value
No solution: 'x' and 'y' can not be solved with the given equations
Infinite solutions: values for 'x' and 'y' include all real numbers
In order to evaluate the systems, putting them in the same format is your first step:
a) - y = -5x - 6 or y - 5x = 6
y - 5x = -6
Since both equations have the same expression 'y - 5x', but there are equal to opposite values, this system would have no solution, as this would not be possible to calculate.
b) y + 3x = -1
y = 3x -1 or y - 3x = -1
Solving for 'y' by adding the equations and eliminating 'x', gives us:
2y = -2 or y = -1
Using y = -1 to plug back into an equation and solve for 'x': -1 + 3x = -1 or x = 0. Since 'x' and 'y' can be solved for a value, the system has just one solution.