Answer:
Energy used, input
Monthly bill, output
Step-by-step explanation:
the bill is affected by how much energy u use
HOPE THIS HELPS!
Brainliest?
Direct Proportion and The Straight Line Graph
Back Forces Physics Mathematics Contents Index Home
Straight line graphs that go through the origin, like the one immediately below, show that the quantities on the graph are in direct proportion. This graph states, therefore, that A is directly proportional to B. It also states that B is directly proportional to A, but we are going to work with the statement 'A is directly proportional to B'.
For the above graph:
This is how you write a direct proportion. The symbol in the middle is the Greek letter alpha.
It reads: A is directly proportional to B.
It means: By whatever factor A changes, B changes by the same factor.
So, let's look at the graph and see if by whatever factor A changes, B changes by the same factor.
This is what we are looking for, as we go from 'sub 1' to 'sub 2':
About the factor changes:
Below is an example of a point on this graph. The point is (B1, A1) and it has coordinates (1, 1).
For the above graph:
Coordinate for B1.
Coordinate for A1.
We will check for this shape of a graph if we change A by some factor, does B truly change by the same factor, thus showing that this straight line through the origin represents a direct proportion. In the graph below we change the quantity A by a factor of 3; that is, we triple it.
For the above graph:
Coordinates for (B1, A1).
Coordinates for (B2, A2).
Going from 'sub 1' to 'sub 2', A changes by a factor of 3. That is, A1 times a factor of 3 equals A2.
Going from 'sub 1' to 'sub 2', B also changes by a factor of 3. Likewise, B1 times a factor of 3 equals B2.
Both A and B change by the same factor. That factor is 3.
Therefore, A is directly proportional to B.
Again, the picture:
Let's try this below again for another point using the same graph. Here's the picture:
These steps show the factor changes:
For the above graph:
Coordinates for (B1, A1).
Coordinates for (B2, A2).
Going from 'sub 1' to 'sub 2', A changes by a factor of 4.
Going from 'sub 1' to 'sub 2', B also changes by a factor of 4.
Both A and B change by the same factor. That factor is 4.
Therefore, A is directly proportional to B.
Again:
This straight line graph really tells two stories. If you can say that A is directly proportional to B, then you can state that B is directly proportional to A. The above works out the same.
The function in the graph used here is:
Or, using formal function definition writing:
Lastly:
If someone says, 'A is proportional to B', they most assuredly mean, 'A is directly proportional to B'. Some might feel that the constant inclusion of the word 'direct' is unnecessary. It does, though, get to exactly what you are talking about, because there are other types of proportions
Answer:
The situation best for the equation 3x=288 Is by dividing both sides by the coefficient of x to single out the variable
Step-by-step explanation:
=> 3x/3=288/3
=> x = 96
Answer:
The distribution is <u>positively skewed</u>.
Step-by-step explanation:
It's not symmetric because the distribution in the chart isn't equally shown or marked. It's not negative skewed either because for it to be negative the graph would have to go down in a negative direction, usually the left, but in the picture you posted the graph is going down in the right direction. Lastly, positively skewed graphs or charts look like the one you posted. They go down in the right direction, hence why they're called "positively" skewed. The right tail of the distribution is longer in positively skewed graphs or charts.