Answer:
50miles/hour
Step-by-step explanation:
400/8 is 50.
Answer:
The interval [32.6 cm, 45.8 cm]
Step-by-step explanation:
According with the <em>68–95–99.7 rule for the Normal distribution:</em> If
is the mean of the distribution and s the standard deviation, around 68% of the data must fall in the interval
![\large [\bar x - s, \bar x +s]](https://tex.z-dn.net/?f=%5Clarge%20%5B%5Cbar%20x%20-%20s%2C%20%5Cbar%20x%20%2Bs%5D)
around 95% of the data must fall in the interval
around 99.7% of the data must fall in the interval
![\large [\bar x -3s, \bar x +3s]](https://tex.z-dn.net/?f=%5Clarge%20%5B%5Cbar%20x%20-3s%2C%20%5Cbar%20x%20%2B3s%5D)
So, the range of lengths that covers almost all the data (99.7%) is the interval
[39.2 - 3*2.2, 39.2 + 3*2.2] = [32.6, 45.8]
<em>This means that if we measure the upper arm length of a male over 20 years old in the United States, the probability that the length is between 32.6 cm and 45.8 cm is 99.7%</em>
I think your answer would be C.
Answer:
A. Slope is -12 feet per second
B. Yes, it is constant.
<u>Skills needed: Linear Equations, Substitution and Division</u>
Step-by-step explanation:
1) Solving Part A (we need to find the slope):
- The slope is
-->
,
,
, and
are all values from the table. We know that the left column is the x-values, and the right column is the y-values as that is the conventional way of depicting them.
2) Using the y-values of 1150 and 1090, and their corresponding x-values (5 and 10 respectively), we can get the slope:
-
==>
==>
==>
, so the slope is -12.
==================================================================
1) Part B (analysis)
We can see that no matter what 2 y-values and their corresponding x values we use, the slope always is the same. This means that the rate of change is constant.
Answer:
a. S = 3n + 2
b. There while be 62 squares.
Step-by-step explanation:
We know the first term of this sequence is 5. To figure out the equation, subtract the following term from the previous. Do you see a common difference?
8 - 5 = 3
11 - 8 = 3
14 - 11 = 3
We're seeing a constant difference of 3 (which makes this an arithmetic sequence), but the first term is 5. That mean something is being added to make the first term 5. Subtract 3 from 5 to get 2. This means 2 is being added to every multiple of 3, which leads us to the equation: S = 3n + 2.
To find the 20th term of this sequence, substitute n for 20 and do the operations.
S = 3(20) + 2
<em>Multiply 3 by 20, then add 2.</em>
S = 62
The 20th term will have 62 squares.