Answer:
Variation, in biology, any difference between cells, individual organisms, or groups of organisms of any species caused either by genetic differences (genotypic variation) or by the effect of environmental factors on the expression of the genetic potentials (phenotypic variation). Variation may be shown in physical appearance, metabolism, fertility, mode of reproduction, behaviour, learning and mental ability, and other obvious or measurable characters.
chromosomes or by differences in the genes carried by the chromosomes. Eye colour, body form, and disease resistance are genotypic variations. Individuals with multiple sets of chromosomes are called polyploid; many common plants have two or more times the normal number of chromosomes, and new species may arise by this type of variation. A variation cannot be identified as genotypic by observation of the organism; breeding experiments must be performed under controlled environmental conditions to determine whether or not the alteration is inheritable.
Genotypic variations are caused by differences in number or structure of Environmentally caused variations may result from one factor or the combined effects of several factors, such as climate, food supply, and actions of other organisms. Phenotypic variations also include stages in an organism’s life cycle and seasonal variations in an individual. These variations do not involve any hereditary alteration and in general are not transmitted to future generations; consequently, they are not significant in the process of evolution.
Explanation:
Brainliest please?
Answer:
Since every person inherited DNA from their parents, who inherited it from their parents, and so on, a person's DNA is made up of the DNA of their ancestors. If you and another person both have the same ancestor, there's a chance that you both inherited some of the same DNA.
Explanation:
Plz mark brainliest thanks
D. <span>The stomata will close until enough water is lost.</span>
Hope this helps
Since all cells in our body contain DNA, there are lots of places for mutations to occur; however, some mutations cannot be passed on to offspring and do not matter for evolution. Somatic mutations<span> occur in non-reproductive cells and won't be passed onto offspring. For example, the golden color on half of this Red Delicious apple was caused by a somatic mutation. Its seeds will not carry the mutation.
</span>
A single germ line mutation can have a range of effects:
<span><span>No change occurs in phenotype.
Some mutations don't have any noticeable effect on the phenotype of an organism. This can happen in many situations: perhaps the mutation occurs in a stretch of DNA with no function, or perhaps the mutation occurs in a protein-coding region, but ends up not affecting the amino acid sequence of the protein.</span><span>Small change occurs in phenotype.
A single mutation caused this cat's ears to curl backwards slightly.</span><span>Big change occurs in phenotype.
Some really important phenotypic changes, like DDT resistance in insects are sometimes caused by single mutations. A single mutation can also have strong negative effects for the organism. Mutations that cause the death of an organism are called lethals — and it doesn't get more negative than that.</span></span>