1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kobusy [5.1K]
3 years ago
14

Help please ?????!!!

Mathematics
1 answer:
Mariulka [41]3 years ago
6 0

Answer:

1/5

Step-by-step explanation:

You might be interested in
4y square + y - 45 when y=-5
kobusy [5.1K]

Given:

The expression is

4y^2+y-45

To find:

The value of the given expression when y=-5.

Solution:

We have,

4y^2+y-45

Putting y=-5, we get

4(-5)^2+(-5)-45

=4(25)-5-45

=100-50

=50

Therefore, the value of the given expression is 50 when y=-5.

7 0
3 years ago
3. A sample of 50 different-colored golf balls was removed from the total number of
Paraphin [41]

Answer:

C. 350

Step-by-step explanation:

A sample of 50 different coloured balls are removed from total golf balls made.

Out of these 50 coloured balls, 8 balls are pink

Now, to calculate the total number of golf balls made,

we can use the concept of proportion

\frac{number of pink colored balls in sample}{total pink colored balls made} = \frac{number of golf balls taken out as a sample}{ total number of golf balls made}

\frac{8}{56} = \frac{50}{total golf balls made}

total golf balls made = \frac{50\times56}{8}

total golf balls made = 350

5 0
3 years ago
Hey i need help thank ya'll! =D
iogann1982 [59]

Answer:

45 / 56

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e
enot [183]

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

8 0
4 years ago
What's the correct formula for this function? ​
Reptile [31]

Answer:

Option C. y = -2x + 3

Step-by-step explanation:

When we look at this function we see that it has a negative slope and the y-intercept is equal to (0,3).  From this we know that the function we are looking for will be looking like...

y = mx + 3

And as I said earlier since the slope is negative, the only right option is this case will be Option C

8 0
3 years ago
Read 2 more answers
Other questions:
  • Is 5 equal to -5 in math
    13·2 answers
  • What is the equation of a circle with a center located at 0, -2 in a circumference of 16*3.14
    8·1 answer
  • Can someone please help me
    9·2 answers
  • Describe how to find the number of weeks equal to 56 days
    13·2 answers
  • What is the simplified form of 3√7-5√7?​
    7·1 answer
  • Anyone know the answer? Pls help
    10·1 answer
  • True True or False? 1. is true The x-axis is the horizontal line. 2. is true The y-axis is the vertical line.
    14·1 answer
  • A little help please
    12·2 answers
  • If(a-b) =4 and ab=2,find the value of a^2+b^2
    15·1 answer
  • Match each equation to the situation it represents.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!