1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alchen [17]
3 years ago
12

A 15ft. wire is tied to the top of a tree to provide support. If the wire forms a 25° angle with the ground, what is the height

of the tree to the nearest hundredth?
Mathematics
1 answer:
lana [24]3 years ago
4 0

Answer: 6.34\ ft

Step-by-step explanation:

Given

The length of the wire is l=15\ ft

The Wire makes an angle of 25^{\circ} with horizontal

Suppose the height of the tree is h

From the figure, we can write

\Rightarrow \sin 25^{\circ}=\dfrac{h}{l}\\\\\Rightarrow h=l\sin 25^{\circ}\\\Rightarrow h=15\sin 25^{\circ}\\\Rightarrow h=6.34\ ft

Thus, the height of the tree is 6.34\ ft

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Carol used 114 cups of flour in 2 muffins. How many cups of flour are needed to make 12 similar muffins?
son4ous [18]

Answer:

7 1/2 cups

Step-by-step explanation:

If Carol uses 1 1/4 cups of flour for 2 muffins, then she will need to repeat this conversion 6 times since she wants to make identical 12 muffins in all.

So, 1 1/4 * 6 = 7 1/2

Therefore, she needs 7 1/2 cups of flour

Hope that helps! :)

7 0
3 years ago
A manufacturer of radial tires for automobiles has extensive data to support the fact that the lifetime of their tires follows a
Diano4ka-milaya [45]

Answer:  (C) 0.1591

Step-by-step explanation:

Given : A manufacturer of radial tires for automobiles has extensive data to support the fact that the lifetime of their tires follows a normal distribution with

\mu=42,100\text{ miles}

\sigma=2,510\text{ miles}

Let x be the random variable that represents the lifetime of the tires .

z-score : z=\dfrac{x-\mu}{\sigma}

For x= 44,500 miles

z=\dfrac{44500-42100}{2510}\approx0.96

For x= 48,000 miles

z=\dfrac{48000-42100}{2510}\approx2.35

Using the standard normal distribution table , we have

The p-value : P(44500

P(z

Hence, the probability that a randomly selected tire will have a lifetime of between 44,500 miles and 48,000 miles =  0.1591

3 0
3 years ago
How does the concept of inequality help you describe situations?
kati45 [8]
Try using the back of the book.
3 0
3 years ago
The solid figure shown here can be formed from which net?​
borishaifa [10]

Answer:

B

Step-by-step explanation:

If you unfold it you get shape B

5 0
4 years ago
Read 2 more answers
Other questions:
  • Solve each problem. Be sure to include the correct sign in your answer. a. 8 × 3 = ? b. –7 × 5 = ? c. –6 × (–9) = ? d. 8 ÷ (–2)
    11·2 answers
  • The measures of two supplementary angles are 12q - 9 and 8q + 14. Find the measures of the angles.
    11·1 answer
  • Directions: Write <> or = between each pair of rational numbers
    11·1 answer
  • What is the supplement of a 107 angle?
    6·2 answers
  • Helppp meee !!!!!!!!!!!!!
    8·1 answer
  • What is decimal 4 13/20
    6·1 answer
  • Ms. Thompson is baking bread. The recipe calls for 6.5 cups of flour. She has already put in 2 cups.
    6·2 answers
  • Karl needs to build a stage that has an area of 90 square feet. The length of the stage should be longer than the width. What ar
    5·2 answers
  • Pick one and answer please (u only have to answer one)
    7·2 answers
  • In parallelogram crhs, the measure of angle c is 48.Find the measure of angle h?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!