The appropriate number of significant figure of the mathematical operation 16.2156 +0.014 is 16.230.
<h3 /><h3>Significant figures:</h3>
- 16.2156 is a 6 significant figures number
- 0.014 is a 2 significant figures number
Therefore,
16.2156 + 0.014 = 16.2296
Therefore, let's round it up to 5 significant figures as follows;
learn more on mathematical operation here: brainly.com/question/13055274?referrer=searchResults
Answer:
--------------------------------
Given lines:
- 3x + y = 1 and y + 6 = - 3x
Convert both equations to slope-intercept form of y = mx + b:
- 3x + y = 1 ⇒ y = - 3x + 1
- y + 6 = - 3x ⇒ y = - 3x - 6
Slopes are same, so these are parallel lines, and the distance between parallel lines is:
, where b₁, b₂ - y-intercepts, m- slope
Substitute and calculate:
Answer:
Part 1)
-------> 
Part 2)
-------> 
Part 3)
-----> 
Part 4)
----> 
Part 5)
-------> 
Step-by-step explanation:
Part 1) we have

Find the inverse
Let
y=f(x)

Exchange the variables x for y and t for x

Isolate the variable y
![x=\frac{2y-1}{y+2}\\ \\ xy+2x=2y-1\\ \\xy-2y=-2x-1\\ \\y[x-2]=-2x-1\\ \\y=\frac{-2x-1}{x-2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B2y-1%7D%7By%2B2%7D%5C%5C%20%5C%5C%20xy%2B2x%3D2y-1%5C%5C%20%5C%5Cxy-2y%3D-2x-1%5C%5C%20%5C%5Cy%5Bx-2%5D%3D-2x-1%5C%5C%20%5C%5Cy%3D%5Cfrac%7B-2x-1%7D%7Bx-2%7D)
Let


Part 2) we have

Find the inverse
Let
y=f(x)

Exchange the variables x for y and t for x

Isolate the variable y
![x=\frac{y-1}{2y+1}\\ \\2xy+x=y-1\\ \\2xy-y=-x-1\\ \\y[2x-1]=-x-1\\ \\y=\frac{-x-1}{2x-1}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7By-1%7D%7B2y%2B1%7D%5C%5C%20%5C%5C2xy%2Bx%3Dy-1%5C%5C%20%5C%5C2xy-y%3D-x-1%5C%5C%20%5C%5Cy%5B2x-1%5D%3D-x-1%5C%5C%20%5C%5Cy%3D%5Cfrac%7B-x-1%7D%7B2x-1%7D)
Let


Part 3) we have

Find the inverse
Let
y=f(x)

Exchange the variables x for y and t for x

Isolate the variable y
![x=\frac{2y+1}{2y-1}\\ \\2xy-x=2y+1\\ \\2xy-2y=x+1\\ \\y[2x-2]=x+1\\ \\y=\frac{x+1}{2(x-1)}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B2y%2B1%7D%7B2y-1%7D%5C%5C%20%5C%5C2xy-x%3D2y%2B1%5C%5C%20%5C%5C2xy-2y%3Dx%2B1%5C%5C%20%5C%5Cy%5B2x-2%5D%3Dx%2B1%5C%5C%20%5C%5Cy%3D%5Cfrac%7Bx%2B1%7D%7B2%28x-1%29%7D)
Let


Part 4) we have

Find the inverse
Let
y=f(x)

Exchange the variables x for y and t for x

Isolate the variable y
![x=\frac{y+2}{-2y+1}\\ \\-2xy+x=y+2\\ \\-2xy-y=-x+2\\ \\y[-2x-1]=-x+2\\ \\y=\frac{-x+2}{-2x-1} \\ \\y=\frac{x-2}{2x+1}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7By%2B2%7D%7B-2y%2B1%7D%5C%5C%20%5C%5C-2xy%2Bx%3Dy%2B2%5C%5C%20%5C%5C-2xy-y%3D-x%2B2%5C%5C%20%5C%5Cy%5B-2x-1%5D%3D-x%2B2%5C%5C%20%5C%5Cy%3D%5Cfrac%7B-x%2B2%7D%7B-2x-1%7D%20%5C%5C%20%5C%5Cy%3D%5Cfrac%7Bx-2%7D%7B2x%2B1%7D)
Let


Part 5) we have

Find the inverse
Let
y=f(x)

Exchange the variables x for y and t for x

Isolate the variable y
![x=\frac{y+2}{y-1}\\ \\xy-x=y+2\\ \\xy-y=x+2\\ \\y[x-1]=x+2\\ \\y=\frac{x+2}{x-1}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7By%2B2%7D%7By-1%7D%5C%5C%20%5C%5Cxy-x%3Dy%2B2%5C%5C%20%5C%5Cxy-y%3Dx%2B2%5C%5C%20%5C%5Cy%5Bx-1%5D%3Dx%2B2%5C%5C%20%5C%5Cy%3D%5Cfrac%7Bx%2B2%7D%7Bx-1%7D)
Let


Answer:
x = -1 or x = 7
Step-by-step explanation:
From my understanding, y will be zero and you have to find the value of x.
Step 1: Middle term break
y = x² + 6x - 7
x² + 6x - 7 = 0
x² - 7x + x - 7 = 0
Step 2: Solve
x(x-7) + 1(x-7) = 0
(x+1) (x-7) = 0
x = -1 or x = 7
Therefore, the value of x is either -1 or 7.
!!
Answer:
True
Step-by-step explanation:
To answer this question we must evaluate
y = 0° on both sides of the equation.
For the left side we have:

We know that 
We know that
and
.
Therefore
.
Then the left-hand side of the equals is equal to zero.
On the right side we have:

When evaluating
at 
We have to
.
0 ≠ 1
The equation is not satisfied. Therefore y = 0 ° is a counterexample to the equation