3/5 = .60, 65% = .65, 0.70 is the greatest
5(3x-1)
(x-3)(x-2)
I don't know if you want working out or an explanation? Or if it's too late, sorry.
Answer:
yes
Step-by-step explanation:
The line intersects each parabola in one point, so is tangent to both.
__
For the first parabola, the point of intersection is ...
y^2 = 4(-y-1)
y^2 +4y +4 = 0
(y+2)^2 = 0
y = -2 . . . . . . . . one solution only
x = -(-2)-1 = 1
The point of intersection is (1, -2).
__
For the second parabola, the equation is the same, but with x and y interchanged:
x^2 = 4(-x-1)
(x +2)^2 = 0
x = -2, y = 1 . . . . . one point of intersection only
___
If the line is not parallel to the axis of symmetry, it is tangent if there is only one point of intersection. Here the line x+y+1=0 is tangent to both y^2=4x and x^2=4y.
_____
Another way to consider this is to look at the two parabolas as mirror images of each other across the line y=x. The given line is perpendicular to that line of reflection, so if it is tangent to one parabola, it is tangent to both.
Answer:
100000
Step-by-step explanation:
Easy peasy
just subsitute I(x) for the x in the h(x) so
h(I(s))=-(2s+3)^2-4
distribute and simplify
h(I(s))=-(4s^2+12s+9)-4
h(I(s))=-4s^2-12s-9-4
h(I(s))=-4s^2-12s-13