Answer:
Step-by-step explanation:
The factored form of a quadratic function is f (x) = a (x - p) (x - q) where p and q are the zeros of f (x).
Shhdhdjdjdjejejdhehehehdhdhdhdhdhdhdhdhhd
Check the picture below, so the circle looks more or less like that one.
well, the center of it is simply the Midpoint of those two points, and its radius is simply half-the-distance between them.
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-5}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 3 -5}{2}~~~ ,~~~ \cfrac{ 5 + 9}{2} \right)\implies \left( \cfrac{-2}{2}~~,~~\cfrac{14}{2} \right)\implies \stackrel{center}{(-1~~,~~7)} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-5%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%203%20-5%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%205%20%2B%209%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%20%5Ccfrac%7B-2%7D%7B2%7D~~%2C~~%5Ccfrac%7B14%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cstackrel%7Bcenter%7D%7B%28-1~~%2C~~7%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-5}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[3 - (-5)]^2 + [5 - 9]^2}\implies d=\sqrt{(3+5)^2+(-4)^2} \\\\\\ d=\sqrt{8^2+16}\implies d=\sqrt{80}\implies d=4\sqrt{5}~\hfill \stackrel{\textit{half the diameter}}{\cfrac{4\sqrt{5}}{2}\implies \underset{radius}{2\sqrt{5}}}](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-5%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B3%20-%20%28-5%29%5D%5E2%20%2B%20%5B5%20-%209%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%283%2B5%29%5E2%2B%28-4%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B8%5E2%2B16%7D%5Cimplies%20d%3D%5Csqrt%7B80%7D%5Cimplies%20d%3D4%5Csqrt%7B5%7D~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bhalf%20the%20diameter%7D%7D%7B%5Ccfrac%7B4%5Csqrt%7B5%7D%7D%7B2%7D%5Cimplies%20%5Cunderset%7Bradius%7D%7B2%5Csqrt%7B5%7D%7D%7D)
Answer:
A
Step-by-step explanation:
An equivalent expression is an expression which is equal to (x-9)(2x^2-6x+3). You can expand or simplify an expression to make an equivalent expression. Apply the distributive property to form a new equivalent expression by multiplying (x-9) separately into the factor in parenthesis.
(x-9)(2x^2-6x+3) = x(2x^2-6x+3) - 9(2x^2-6x+3)