Answer:
Mitosis involves the division of body cells, while meiosis involves the division of sex cells. ... Two daughter cells are produced after mitosis and cytoplasmic division, while four daughter cells are produced after meiosis. Daughter cells resulting from mitosis are diploid, while those resulting from meiosis are haploid
Answer is Middle Paleozoic era.
Paleozoic era was in 542 Ma - 245 Ma and it has 6 periods as Cambrian, Ordovician, Silurian, Devonian, Carboniferous and Permian.
360-280 Ma - forming of vascular plants with woody tissues, seeds and veins.
430 - 410 Ma - forming of jawed fishes and first amphibians.
420 Ma - forming of scorpions
360 Ma - forming of crustaceans.
Answer:
0.8
Explanation:
There is a population where the frequencies of allele 1 and allele 2 are 0.7 and 0.3, respectively
Let's use GG to represent allele 1
Let's use gg to represent allele 2
So we can equally say that;
GG = p = 0.7
gg = q = 0.3 ( from Hardy-Weinberg Equilibrium)
So, given that the selection coefficient = 0.2
We known that the cross between GG and gg will definitely results to (GG,Gg and gg)
Then the fitness of these genes can be represented as:
1 - s, 1 and 1 - t respectively.
Thus. the allele 1's genotype fitness can be determined as
= 1 - s ( where s is the selection coefficient)
= 1 - 0.2
= 0.8
Answer:
Genetics are important because it'll pass down to your kids - For example, if you have a disease, your child can possibly obtain the disease from you.
Genetics, blood type gene has two alleles, each allele has genotype A, B or O. The A and B are dominant, and O is recessive. So allele A combined with allele O is type A. Similarly, BO is type B, AA is type A, BB is type B, OO is type O, and AB is typeAB.
If both parents have type A blood, then the alleles could be AA or AO, thus the allele A frequency is 75%, allele O frequency is 25% for both parents.
So the chance of alleles OO is 25% × 25% = 6.25%,
alleles AA is 75% × 75% = 56.25%,
alleles AO is 75% × 25% = 18.75%,
alleles OA is 25% × 75% = 18.75%.
Since AA, AO and OA are blood type A, and OO is blood type O, thus their child has 6.25% chance to be blood type O and 93.75% chance to be blood type A.
The +/- is called the rhesus factor, with + being dominant, and - being recessive.
So if both parents are -, the kids are always -, otherwise the kids might be + or -.
Child Blood Type Estimate Table:
Father's Blood TypeABABOMother's
Blood
TypeAA/OA/B/AB/OA/B/ABA/OBA/B/AB/OB/OA/B/ABB/OABA/B/ABA/B/ABA/B/