Answer:
The probability that there are more heads than tails is equal to
.
Step-by-step explanation:
Since the number of flips is an odd number, there can't be an equal number of heads and tails. In other words, there are either
- more tails than heads, or,
- more heads than tails.
Let the event that there are more heads than tails be
.
(i.e., not A) denotes that there are more tails than heads. Either one of these two cases must happen. As a result,
.
Additionally, since this coin is fair, the probability of getting a head is equal to the probability of getting a tail on each toss. That implies that (for example)
- the probability of getting 7 heads out of 15 tosses will be the same as
- the probability of getting 7 tails out of 15 tosses.
Due to this symmetry,
- the probability of getting more heads than tails (A is true) is equal to
- the probability of getting more tails than heads (A is not true.)
In other words
.
Combining the two equations:
,
.
In other words, the probability that there are more heads than tails is equal to
.
This conclusion can be verified using the cumulative probability function for binomial distributions with
as the probability of success.

.
The answer to this question will be 45 because you minus 15 on both sides and get 45 for 60 minus 15 and then will minus 2x on both sides and the Equation will now be x=45 and you plug it in to check
B, feet squared.
This is because we are finding the area of a square, not a cube.
50% of 10 is just half so half of 10 is 5
The answer is five
Answer:
m∠BAC = 105°
m∠FAB = 75°
Step-by-step explanation:
By using the property of an exterior angle of a triangle,
Measure of an exterior angle is equal to the sum of opposite two angles of a triangle.
From the triangle given in the picture,
m∠ABC + m∠BCA + m∠CAB = 180°
(13x - 3)° = (3x + 2)° + 55°
13x - 3 = 3x + 57
13x - 3x = 57 + 3
10x = 60
x = 6
m∠FAB = (13x - 3)° = 75°
m∠ABC = (3x + 2)° = 20°
Since, ∠BAC and ∠FAB are the linear pair of angles,
m∠BAC + m∠FAB = 180°
m∠BAC + 75° = 180°
m∠BAC = 180° - 75° = 105°