1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
3 years ago
10

Rachel is pouring a concrete patio. Her patio will be 6 inches deep, 6 feet long and 8 feet wide. If she rounds up to the neares

t hundredth, how many cubic yards of concrete will she need? (Remember, yd3=in3÷46,656) 0.43 cubic yard 0.65 cubic yard 0.89 cubic yard 1.13 cubic yards
Mathematics
2 answers:
klemol [59]3 years ago
8 0

Find cubic feet :

0.5 x 6 x 8 = 24 cubic feet.

Divide cubic feet by 27 to get cubic yards

24/27 = 0.89 cubic yards

zavuch27 [327]3 years ago
4 0

Answer:

24

Step-by-step explanation:

i think

You might be interested in
Select all points from the list below that lie
Kaylis [27]

Answer:

so you need to take them and put them on the 4 quadrants or need to be put on a number line

Step-by-step explanation:

is there any other thing attached to the question?

6 0
3 years ago
A coordinate grid with 2 lines. The first line is labeled y equals negative StartFraction 7 over 4 EndFraction x plus StartFract
KengaRu [80]

Answer:

1) (2.2, -1.4)

2) (1.33, 1)

Step-by-step explanation:

Question 1)

Two lines, with their corresponding equations are given and we have to find the solution to the system of equations.

The given lines are:

Equation of Line 1:

y=\frac{-7}{4}x+\frac{5}{2}

This line passes through the points: (0, 2.5) , (2.2, -1.4)

Equation of Line 2:

y=\frac{3}{4}x-3

This line passes through the points (0, -3) , (2.2, -1.4)

By looking at the graph/given data we have to find the solution of these linear equations.

Remember that the solution of linear equations is an ordered pair, through which both the lines pass i.e. the point at which both the given lines intersect is the solution of the linear equations.

From the given data we can see that both the lines pass through one common point, (2.2, -1.4). Since, both lines pass through this point, this means this is the point of intersection of the lines and hence there solution.

So, the answer to this questions is (2.2, -1.4)

Question 2)

The given equations are:

y = 1.5x - 1                                        Equation 1

y = 1                                                  Equation 2

We can solve these equations by method of substitution.

Substituting the value of y from Equation 2, in Equation 1, we get:

1 = 1.5x - 1

1 + 1 = 1.5x

2 = 1.5x

x = 2/1.5

x = 1.33

y = 1

Thus, the solution of the given linear equations is (1.33, 1)

5 0
3 years ago
Read 2 more answers
Could someone help me with this problem!:)
kow [346]

Answer:

i think it's 9 just correct me if I'm wrong

4 0
2 years ago
Answer the following.
nexus9112 [7]

Step-by-step explanation:

1075 students were asked how close they live to the college. The table shows the results below with some values missing. Enter the correct values in the boxes remembering to use the % symbol where necessary.

<u>20 to 25: </u>given 20%

20% of 1,075 = 215

<u>15 to 19: </u>given 12%

12% of 1,075 = 129

<u>10 to 14: </u>given 516 students

(516/1,075)*100 = 48%

<u>5 to 9: </u>given 162 students

(162/1,075)*100 = 15.07%

<u>< 5: </u>given 53 students

(53/1,075)*100 = 4.93%

3 0
1 year ago
Solve the equation 3^(2x) -4*3^(x+1) + 27 = 0. use rules of exponents to change 3^(x+1)​
Leviafan [203]

Answer:

\huge\boxed{x=1\ \vee\ x=2}

Step-by-step explanation:

3^{2x}-4\cdot3^{x+1}+27=0\\\\\text{use}\ (a^n)^m=a^{nm}\ \text{and}\ a^n\cdot a^m=a^{n+m}\\\\\left(3^x\right)^2-4\cdot3^x\cdot3^1+27=0\\\\\left(3^x\right)^2-12\cdot3^x+27=0\\\\\text{substitute}\ 3^x=t>0\\\\t^2-12t+27=0\\\\t^2-3t-9t+27=0\\\\t(t-3)-9(t-3)=0\\\\(t-3)(t-9)+0\iff t-3=0\ \vee\ t-9=0\\\\t-3=0\qquad\text{add 3 to both sides}\\\boxed{t=3}\\\\t-9=0\qquad\text{add 9 to both sides}\\\boxed{t=9}

\text{We return to substitution:}\\\\3^x=t\\\\3^x=3\ \vee\ 3^x=9\\\\3^x=3^1\ \vee\ 3^x=3^2\\\\\boxed{x=1}\ \vee\ \boxed{x=2}

4 0
3 years ago
Other questions:
  • 20,000 is 1/10 of what?
    7·1 answer
  • What is the value of the discriminant of the quadratic equation -1=5x^2-2x and what does its value mean about the number of real
    11·2 answers
  • What is the value of 7z^2 + 4 x 3w when w= 8 and z= -3
    14·2 answers
  • Writing for 63 332 3,00 30,000 300,000 400 40,000
    13·1 answer
  • Describe several methods you could use to determine the rational zeros of a polynomial function. Which would you choose to use f
    15·1 answer
  • Create a polynomial function in factored form that crosses through the x-axis at -2 and touches the x-axis and turns around at 4
    15·1 answer
  • Use the table below to answer the following questions:
    15·1 answer
  • The half-life of a radioactive kind of antimony is 60 days. If you start with 720 grams of it, how much will be left after 180 d
    10·2 answers
  • -2(t+7)=-4t+12 what is the value of t
    9·1 answer
  • Can someone help me with this and show work pleaseee!!!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!