Let us first define Hypotenuse Leg (HL) congruence theorem:
<em>If the hypotenuse and one leg of a right angle are congruent to the hypotenuse and one leg of the another triangle, then the triangles are congruent.</em>
Given ACB and DFE are right triangles.
To prove ΔACB ≅ ΔDFE:
In ΔACB and ΔDFE,
AC ≅ DF (one side)
∠ACB ≅ ∠DFE (right angles)
AB ≅ DE (hypotenuse)
∴ ΔACB ≅ ΔDFE by HL theorem.
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
Answer:
.6 pages per hour
Step-by-step explanation:
Both is the answer to the problem
Answer:
The correct answer is 16w.
Step-by-step explanation:
w = 1w
1⋅w⋅16 =
1⋅1w⋅16 =
16w
Therefore, the correct answer is 16w.
Hope this helps! :D