1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
15

I really need help guys I'm so silly

\times 4" alt=" - 5 \times 4" align="absmiddle" class="latex-formula">
​
Mathematics
1 answer:
aksik [14]3 years ago
8 0

Answer:

-20

Step-by-step explanation:

First, you just have to take off the negative sign:

5 \times 4

Then, multiply:

5 \times 4 = 20

Lastly, put the negative sign back on the 20:

-20

That's your answer!

You might be interested in
A rectangular field is 300 meters long and 250 meters wide. What is the area of the field in square kilometers
lidiya [134]

Answer:

0.075 sq km

Step-by-step explanation:

Given that there is a rectangular field with dimensions of length =300 m and width = 250 m.

We have to calculate area of this rectangle in the units of square kilometres.

Let us convert length and width into km

1000m = 1 km

Hence length = 300/1000= 0.3 km and

width = 250/1000 = 0.25 km.

ARea = length x width = 0.3 x 0.25

=0.075 square km.

7 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
What is the slope of the line that passes through the points (1, -6) and (-2, –8)?
Sloan [31]

Answer:

Where the line is going

Step-by-step explanation:

Put attention next time

Ps. Just check if its on x or on the y

7 0
3 years ago
This is a picture of a cube and the net for the cube. What is the surface area of the cube? 78in 169in 507in or 1,014in
Stolb23 [73]

Answer:

1014 cm^2.

Step-by-step explanation:

There are 6 square faces on the cube and each face has area 13^2 = 169 cm^2.

The total area is 169 * 6 = 1.014 cm^2.

5 0
3 years ago
Read 2 more answers
Amy purchased a house for $551,000 and obtained a mortgage for $519,000 she purchased 3 discount points and 2 origination points
Olegator [25]
Discount points are normally a type of prepaid interests that lowers the interest on subsequent payments for mortgage borrowers pay.

Each of the points is given by:

1 point = 1% of the mortgage value.

Therefore,
Cost of discount points = 0.01*519,000*3 = $15,570
Cost of origination points = 0.01*519,000*2 = $10,380

In this regard, option B. is the correct answer on the cost of discount and origination points respectively.
4 0
4 years ago
Other questions:
  • Test worth 70 points test score of 90%
    8·2 answers
  • Solve for x.
    15·1 answer
  • The main difference between a traditional mortgage and an arm is the?
    13·2 answers
  • Put the following in slope intercept form<br><br> 4x - 3y = 15
    7·1 answer
  • Andrea earns $32.25 a day. After 9 days, about how much will she have earned?
    13·2 answers
  • What is the quatient of (×3+6×2+11×+6)÷(×2+4×+3​
    6·1 answer
  • Choose the best answer.
    8·1 answer
  • Each morning librarians place 560 books on a book shelf in the school library. Each student that visits library that day takes e
    7·1 answer
  • Graph a line that contains the point (4 3) and has a slope of 1/2​
    5·1 answer
  • What is 3/7 as decimal
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!