1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
12

Put this number from LEAST to GREATEST

Mathematics
1 answer:
Pepsi [2]3 years ago
8 0

Answer:

70 thousand

12 million

25 million

208 million

293 million

535 million

You might be interested in
Why are there no properties of subtraction or division?
tia_tia [17]
There are no properties because you can do anything with subtraction and division
4 0
3 years ago
Y/3 − 5 = 3 sole for y
elena-14-01-66 [18.8K]

Answer:

Step-by-step explanation:

y/3-5=3

add 5 to both sides

y/3=8

multiply both sides by 3

y=8 x 3

y=24

4 0
3 years ago
Read 2 more answers
Round 24.316 to the nearest tenth
borishaifa [10]

24.3

bcoz to round to tenths place need to chk with hundreths place.

As 1 is in hudredths place so the digit in tenths place remains the same

7 0
4 years ago
Whats 2 +2 first one to answer I might give brainiest
labwork [276]

Answer:

2 + 2 = 4

OR

2 + 2 = 22

Step-by-step explanation:

Heh

4 0
2 years ago
Read 2 more answers
A) Evaluate the limit using the appropriate properties of limits. (If an answer does not exist, enter DNE.)
Gelneren [198K]

For purely rational functions, the general strategy is to compare the degrees of the numerator and denominator.

A)

\displaystyle \lim_{x\to\infty} \frac{2x^2-5}{7x^2+x-3} = \boxed{\frac27}

because both numerator and denominator have the same degree (2), so their end behaviors are similar enough that the ratio of their coefficients determine the limit at infinity.

More precisely, we can divide through the expression uniformly by <em>x</em> ²,

\displaystyle \lim_{x\to\infty} \frac{2x^2-5}{7x^2+x-3} = \lim_{x\to\infty} \frac{2-\dfrac5{x^2}}{7+\dfrac1x-\dfrac3{x^2}}

Then each remaining rational term converges to 0 as <em>x</em> gets arbitrarily large, leaving 2 in the numerator and 7 in the denominator.

B) By the same reasoning,

\displaystyle \lim_{x\to\infty} \frac{5x-3}{2x+1} = \boxed{\frac52}

C) This time, the degree of the denominator exceeds the degree of the numerator, so it grows faster than <em>x</em> - 1. Dividing a number by a larger number makes for a smaller number. This means the limit will be 0:

\displaystyle \lim_{x\to-\infty} \frac{x-1}{x^2+8} = \boxed{0}

More precisely,

\displaystyle \lim_{x\to-\infty} \frac{x-1}{x^2+8} = \lim_{x\to-\infty}\frac{\dfrac1x-\dfrac1{x^2}}{1+\dfrac8{x^2}} = \dfrac01 = 0

D) Looks like this limit should read

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t}+t^2}{3t-t^2}

which is just another case of (A) and (B); the limit would be

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t}+t^2}{3t-t^2} = -1

That is,

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t}+t^2}{3t-t^2} = \lim_{t\to\infty}\frac{\dfrac1{t^{3/2}}+1}{\dfrac3t-1} = \dfrac1{-1} = -1

However, in case you meant something else, such as

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t+t^2}}{3t-t^2}

then the limit would be different:

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t^2}\sqrt{\dfrac1t+1}}{3t-t^2} = \lim_{t\to\infty}\frac{t\sqrt{\dfrac1t+1}}{3t-t^2} = \lim_{t\to\infty}\frac{\sqrt{\dfrac1t+1}}{3-t} = 0

since the degree of the denominator is larger.

One important detail glossed over here is that

\sqrt{t^2} = |t|

for all real <em>t</em>. But since <em>t</em> is approaching *positive* infinity, we have <em>t</em> > 0, for which |<em>t</em> | = <em>t</em>.

E) Similar to (D) - bear in mind this has the same ambiguity I mentioned above, but in this case the limit's value is unaffected -

\displaystyle \lim_{x\to\infty} \frac{x^4}{\sqrt{x^8+9}} = \lim_{x\to\infty}\frac{x^4}{\sqrt{x^8}\sqrt{1+\dfrac9{x^8}}} = \lim_{x\to\infty}\frac{x^4}{x^4\sqrt{1+\dfrac9{x^8}}} = \lim_{x\to\infty}\frac1{\sqrt{1+\dfrac9{x^8}}} = \boxed{1}

Again,

\sqrt{x^8} = |x^4|

but <em>x</em> ⁴ is non-negative for real <em>x</em>.

F) Also somewhat ambiguous:

\displaystyle \lim_{x\to\infty}\frac{\sqrt{x+5x^2}}{3x-1} = \lim_{x\to\infty}\frac{\sqrt{x^2}\sqrt{\dfrac1x+5}}{3x-1} = \lim_{x\to\infty}\frac{x\sqrt{\dfrac1x+5}}{3x-1} = \lim_{x\to\infty}\frac{\sqrt{\dfrac1x+5}}{3-\dfrac1x} = \dfrac{\sqrt5}3

or

\displaystyle \lim_{x\to\infty}\frac{\sqrt{x}+5x^2}{3x-1} = \lim_{x\to\infty}x \cdot \lim_{x\to\infty}\frac{\dfrac1{\sqrt x}+5x}{3x-1} = \lim_{x\to\infty}x \cdot \lim_{x\to\infty}\frac{\dfrac1{x^{3/2}}+5}{3-\dfrac1x} = \frac53\lim_{x\to\infty}x = \infty

G) For a regular polynomial (unless you left out a denominator), the leading term determines the end behavior. In other words, for large <em>x</em>, <em>x</em> ⁴ is much larger than <em>x</em> ², so effectively

\displaystyle \lim_{x\to\infty}(x^4-2x) = \lim_{x\to\infty}x^4 = \boxed{\infty}

6 0
3 years ago
Other questions:
  • Six sandwiches are being divided evenly among 4 friends.
    11·2 answers
  • 104/96 as a mixed fraction
    12·1 answer
  • If 3 1/2 pounds of bananas cost 1.96 how much would one pound cost
    7·2 answers
  • What is the end behavior of the function h? H(x)=-4x+4
    15·1 answer
  • What steps would you take in order to solve the equation m + 61 = 39 ? add 61 and multiply by add 61 and multiply by 2 subtract
    5·2 answers
  • Lin read the first 54 pages from a 270-page book in the last 3 days. Diego read the first 100 pages from a 320-page book in the
    11·1 answer
  • 2(-8х+4)=-3(x+6)<br> Appreciate it .!
    15·1 answer
  • What is the value of m in the equation 2m - (m + 1) = 0?
    15·1 answer
  • Help this is confusing
    13·1 answer
  • 2) Find the value of x. (pic below)<br> A. 180 degrees<br> B. 58 degrees<br> C. 122 degrees
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!