1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leviafan [203]
3 years ago
10

A source emits sound at a fixed constant frequency f. If you run towards the source, the frequency you hear is

Physics
1 answer:
Ulleksa [173]3 years ago
7 0

Answer:

increased because as you run into each sound wave the time between each sound decreases meaning the period of each wave decreases to your years and since f=1/T and T is decreasing by greater than 0, f must increase.

Explanation:

You might be interested in
Odtake them for freee​
Stolb23 [73]

Answer:

Thank youu89okkiiiooo

5 0
3 years ago
Read 2 more answers
In class we calculated the range of a projectile launched on flat ground. Consider instead, a projectile is launched down-slope
zysi [14]

Answer:

With an initial speed of 10m/s at an angle 30° below the horizontal, and a height of 8m, the projectile travels 7.49m horizontally before it lands.

Explanation:

Since the horizontal motion is independent from the vertical motion, we can consider them separated. The horizonal motion has a constant speed, because there is no external forces in the horizontal axis. On the other hand, the vertical motion actually is affected by the gravitational force, so the projectile will be accelerated down with a magnitude g.

If we have the initial velocity v_o and its angle \theta, we can obtain the vertical component of the velocity v_{oy} using trigonometry:

v_{oy}=v_osin\theta

Therefore, if we know the height at which the projectile was launched, we can obtain the final velocity using the formula:

v_{fy}^{2} =v_{oy}^{2}+2gy\\\\ v_{fy}=\sqrt{v_{oy}^{2}+2gy }

Next, we compute the time the projectile lasts to reach the ground using the definition of acceleration:

g=\frac{v_{fy}-v_{oy}}{\Delta t} \\\\\Delta t= \frac{v_{fy}-v_{oy}}{g}=\frac{\sqrt{v_{oy}^{2}+2gy} -v_{oy}}{g}

Finally, from the equation of horizontal motion with constant speed, we have that:

x=v_{ox}\Delta t= v_{ox}\frac{\sqrt{v_{oy}^{2}+2gy} -v_{oy}}{g}

For example, if the projectile is launched at an angle 30° below the horizontal with an initial speed of 10m/s and a height 8m, we compute:

v_{ox}=10\frac{m}{s} cos30=8.66\frac{m}{s}\\v_{oy}=10\frac{m}{s} sin30=5\frac{m}{s}\\\\x=8.66\frac{m}{s} \frac{\sqrt{(5\frac{m}{s}) ^{2}+2(9.8\frac{m}{s^{2}})8m}-5\frac{m}{s}  }{9.8\frac{m}{s^{2} } } =7.49m

In words, the projectile travels 7.49m horizontally before it lands.

8 0
4 years ago
When the moon slowly moves away from the earth.How is it affecting the gravitational force between the earth and the moon?
sukhopar [10]
Well, think about how the tides will be affected when the moon moves farther away. If the moon first started off very close the earth, we would have more tsunamis. (Scientists have found that the moon has possibly been closer to earth long ago.) While it moves away, soon there will no longer be many tides.
3 0
3 years ago
Based on the simple blackbody radiation model described in class, answer the following question. The planets Mars and Venus have
Lera25 [3.4K]

Answer:

The extent of greenhouse effect on mars is G_m =  87 K  

Explanation:

From the question we are told that

     The albedo value of Mars is  A_1  = 0.15

      The albedo value of Mars is  A_2  = 0.15

       The surface temperature of Mars is  T_1 = 220 K

        The surface temperature of Venus is  T_2 = 700 K

          The distance of Mars from the sun is d_m = 2.28*10^8 \ km = 2.28*10^8* 1000 = 2.28*10^{11} \  m

          The distance of Venus from sun is  d_v = 1.08 *10^{8} \ km = 1.08 *10^{8} * 1000 =  1.08 *10^{11} \ m

       The radius of the sun is R = 7*10^{8} \ m

        The energy flux is   E = 6.28 * 10^{7} W/m^2

The solar constant for Mars is mathematically represented as

 

          T = [\frac{E R^2 (1- A_1)}{\sigma d_m} ]

Where \sigma is the Stefan's constant with a value  \sigma = 5.6*10^{-8} \ Wm^{-2} K^{-4}

So substituting values

         T = \frac{6.28 *10^{7} * (7*10^8)^2 * (1-0.15)}{(5.67 *10^{-8}) * (2.28 *10^{11})^2)}

          T = 307K

So the greenhouse effect on Mars is  

           G_m =  T -  T_1

           G_m =  307 - 220

          G_m =  87 K

   

3 0
4 years ago
A person is standing on a level floor. His head, upper
BabaBlast [244]

Answer:

y_{cg} = 1.03 m

Explanation:

Given data:

weigh (head+arms + head) w_1 = 438 N

centre of gravity y_1= 1.28 m

weigh (upper leg) w_2 = 144 N

Center of gravity y_2 = 0.760 m

weigh ( lower leg + feet) = 87 N

centre of gravity = y_3 = 0.250 m

location of center of gravity = \frac{w_1 y_1 + w_2 y_2 + w_3 y_3}{w_1 +W_2 +w_3}

y_{cg} = \frac{438 \times 1.28 + 144\times 0.760 + 87 \times 0.250}{438+144+87}

y_{cg} = 1.03 m

8 0
4 years ago
Other questions:
  • What are comets made of?
    5·1 answer
  • Distribution intensity is commonly divided into three levels:
    12·2 answers
  • The pressure drop along a length of artery is 100 Pa, the radius is 10 mm, and the flow is laminar. The average speed of the blo
    13·1 answer
  • Why does a magnet exert a force on another magnet when the two magnets are not in contact?
    8·2 answers
  • Please help!!! what is the definition of ozone layer
    11·1 answer
  • I don't know how to solve this please help
    8·1 answer
  • An object with a mass of 2.0 kg accelerates 2.0 m/s2 when an unknown force is applied to it. What is the amount of the force?
    5·1 answer
  • Help uhh i need to know this answer
    12·1 answer
  • Lucas works in a laboratory that conducts research on the use of transgenic plants to make antibodies and hormones. What field i
    7·2 answers
  • If a book has a weight of 23.3 N on earth, what is its mass
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!