1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
7

F(x) = 3x + 8 Inverse function?

Mathematics
1 answer:
mr Goodwill [35]3 years ago
4 0

Answer:

f -1 (x) = x/3 - 8/3

Step-by-step explanation:

You might be interested in
Does anyone know this answer??
Aleonysh [2.5K]

For this case we have the following equation:

(2x + 3) ^ 2 + 8 (2x + 3) + 11 = 0

Let u = 2x + 3

We have:

u ^ 2 + 8u + 11 = 0

By definition, given an equation of the form ax ^ 2 + bx + c = 0

The quadratic formula, to find the solution can be written as:

x = \frac{-b+/-\sqrt{b ^ 2-4 (a) (c)} }{2(a)}

In this case we have:

a = 1\\b = 8\\c = 11

Substituting in the quadratic formula we have:

See attached image

Answer:

Option B

8 0
3 years ago
Read 2 more answers
Liam’s is punting a picture she has green
Natali5045456 [20]
That makes no sense at all!!!
7 0
3 years ago
How do you solve System of Equations?
Katarina [22]

The addition method of solving systems of equations is also called the method of elimination. This method is similar to the method you probably learned for solving simple equations.

If you had the equation "<span>x + 6 = 11</span>", you would write "–6" under either side of the equation, and then you'd "add down" to get "<span>x = 5</span>" as the solution.

<span>x + 6 = 11
    –6    –6
x       =   5</span>

You'll do something similar with the addition method.

<span>Solve the following system using addition.<span>2x + y<span> = 9
3</span>x – y = 16</span>Note that, if I add down, the y's will cancel out. So I'll draw an "equals" bar under the system, and add down:2<span>x + y = 9
3x – y<span> = 16
</span>5x      = 25</span>Now I can divide through to solve for <span>x = 5</span>, and then back-solve, using either of the original equations, to find the value of y. The first equation has smaller numbers, so I'll back-solve in that one:<span><span>2(5) + y = 9
  10 + y = 9
          y = –1</span>Then the solution is <span>(x, y) = (5, –1)</span>.</span></span>

It doesn't matter which equation you use for the backsolving; you'll get the same answer either way. If I'd used the second equation, I'd have gotten:

<span>3(5) – y = 16
  15 – y = 16
        –y = 1
          y = –1</span>

...which is the same result as before.

<span>Solve the following system using addition.<span>x – 2y<span> = –9
</span>x + 3y = 16</span>Note that the x-terms would cancel out if only they'd had opposite signs. I can create this cancellation by multiplying either one of the equations by –1, and then adding down as usual. It doesn't matter which equation I choose, as long as I am careful to multiply the –1<span> through the entire equation. (That means both sides of the "equals" sign!)</span>I'll multiply the second equation.The "–1<span>R2</span>" notation over the arrow indicates that I multiplied row 2 by –1. Now I can solve the equation "<span>–5y = –25</span>" to get <span>y = 5</span>. Back-solving in the first equation, I get:<span><span>x – 2(5) = –9
x – 10 = –9
x = 1</span>Then the solution is <span>(x, y) = (1, 5)</span>.</span></span>

A very common temptation is to write the solution in the form "(first number I found, second number I found)". Sometimes, though, as in this case, you find the y-value first and then the x-value second, and of course in points the x-value comes first. So just be careful to write the coordinates for your solutions correctly. Copyright © Elizabeth Stapel 2003-2011 All Rights Reserved

<span>Solve the following system using addition.<span>2x –   y<span> =     9
3</span>x + 4y = –14</span>Nothing cancels here, but I can multiply to create a cancellation. I can multiply the first equation by 4, and this will set up the y-terms to cancel.Solving this, I get that <span>x = 2</span>. I'll use the first equation for backsolving, because the coefficients are smaller.<span><span>2(2) – y = 9
4 – y = 9
–y = 5
y = –5</span>The solution is <span>(x, y) = (2, –5)</span>.</span></span> <span>Solve the following system using addition. <span> <span><span>  <span><span><span><span /></span></span></span>
<span><span><span /></span></span> </span> <span> <span /></span></span></span></span><span><span>4x – 3y<span> = 25
–3</span>x + 8y = 10</span>Hmm... nothing cancels. But I can multiply to create a cancellation. In this case, neither variable is the obvious choice for cancellation. I can multiply to convert the x-terms to <span>12x</span>'s or the y-terms to <span>24y</span>'s. Since I'm lazy and 12 is smaller than 24, I'll multiply to cancel the x-terms. (I would get the same answer in the end if I set up the y-terms to cancel. It's not that how I'm doing it is "the right way"; it was just my choice. You could make a different choice, and that would be just as correct.)I will multiply the first row by 3 and the second row by 4; then I'll add down and solve.
Solving, I get that <span>y = 5</span>. Neither equation looks particularly better than the other for back-solving, so I'll flip a coin and use the first equation.<span>4x – 3(5) = 25
4x – 15 = 25
4x = 40
x = 10</span>Remembering to put the x-coordinate first in the solution, I get:<span>(x, y) = (10, 5)</span></span>

Usually when you are solving "by addition", you will need to create the cancellation. Warning: The most common mistake is to forget to multiply all the way through the equation, multiplying on both sides of the "equals" sign. Be careful of this.

<span>Solve the following using addition.<span>12x –  13y<span> =   2
–6</span>x + 6.5y = –2</span>I think I'll multiply the second equation by 2; this will at least get rid of the decimal place.Oops! This result isn't true! So this is an inconsistent system (two parallel lines) with no solution (with no intersection point).no solution</span> <span>Solve the following using addition.<span>12x – 3y<span> = 6
  4</span>x –   y = 2</span>I think it'll be simplest to cancel off the y-terms, so I'll multiply the second row by –3.Well, yes, but...? I already knew that zero equals zero. So this is a dependent system, and, solving for "<span>y =</span>", the solution is:<span>y = 4x – 2</span></span>

(Your text may format the answer as "<span>(s, 4s – 2)</span><span>", or something like that.)</span>


6 0
3 years ago
Read 2 more answers
What’s the percent on 1/2cents
ss7ja [257]
The percent is 0.5 or 0.50
4 0
3 years ago
IDENTIFY LIKE TERMS<br> 5y + 15 - 80 - 10y
dexar [7]

Answer:

5y and -10y

15 and -80

-5y -65

3 0
3 years ago
Read 2 more answers
Other questions:
  • Bob has two weekend jobs last weekend he made a total of $77 after working as a cashier for 5 hours and delivering newspapers fo
    5·1 answer
  • Rex, Paulo, and Ben are standing on shore watching for dolphins. Paulo sees one surface directly in front of him about a hundred
    12·2 answers
  • What is the value of x
    9·1 answer
  • Write the explicit formula that represents the geometric sequence -2, 8, -32, 128
    12·1 answer
  • True or False. A sinusoid is a function whose values repeat based on positions of a point that moves around a circle.
    14·2 answers
  • A snack cart sells lemonade for $2 and hot dogs for $5. The vendor sold 86 items today for a total of $330.
    12·2 answers
  • What’s the measure of XYZ?
    7·2 answers
  • Please answer this math question correctly
    10·1 answer
  • My mood is being killed so roast something
    5·1 answer
  • Determine the domain and the range of the relation. The domain for this relation is (0, 1, 3). The range for this relation is (-
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!