Answer:
Sam is incorrect
Step-by-step explanation:
We can calculate the lengths of the diagonals using Pythagoras' identity.
The diagonals divide the rectangle and square into 2 right triangles.
Consider Δ SRQ from the rectangle
SQ² = SR² + RQ² = 12² + 6² = 144 + 36 = 180 ( take square root of both sides )
SQ =
≈ 13.4 in ( to 1 dec. place )
Consider Δ ONM from the square
OM² = ON² + NM² = 6² + 6² = 36 + 36 = 72 ( take square root of both sides )
OM =
≈ 8.5 in ( to 1 dec. place )
Now 2 × OM = 2 × 8.5 = 17 ≠ 13.4
Then diagonal OM is not twice the length of diagonal SQ
The answer is 13/18 because it is congruent to 0.7(2).
7 is a solution
4 is extraneous
The work is attached below
Answer: x= -32/5 and y=16/5
Hope this helps!
Answer:
21.6
Step-by-step explanation:
Do 0.18 (18%) times 120