Answer:
tan ∅ = 24 / 7
Step-by-step explanation:
cos ∅ = 7 / 25
sin^2 ∅ + cos^2 ∅ = 1
sin^2 ∅ + (7 / 25)^2 = 1
sin^2 ∅ = 1 - 49 / 625
sin^2 ∅ = 625 - 49 / 625
sin^2 ∅ = 576 / 625
sin ∅ = root 576 / 625
sin ∅ = 24 / 25
tan ∅ = sin ∅ / cos ∅
tan ∅ = 24/25 / 7/25
Therefore, tan ∅ = 24 / 7
OPTION 4. 24 / 7
Answer:
for the first student in the line there are 10 choices,then for the 9 choices left,for the third 8 choices left and so on...
so its 10x9x8x7x6x5x4x3x2x1=3628800
Step-by-step explanation:
sana makatulong
Answer:
given you are asked to simplify

Step-by-step explanation:
You have to multiply the numerator and denominator by the denominator's conjugate.
The conjugate of a+bi is a-bi.
When you multiply conjugates, you just have to multiply first and last.
(a+bi)(a-bi)
a^2-abi+abi-b^2i^2
a^2+0 -b^2(-1)
a^2+-b^2(-1)
a^2+b^2
See no need to use the whole foil method; the middle terms cancel.
So we are multiplying top and bottom of your fraction by (-3+4i):

So you will have to use the complete foil method for the numerator. Let's do that:
(-3+5i)(-3+4i)
First: (-3)(-3)=9
Outer:: (-3)(4i)=-12i
Inner: (5i)(-3)=-15i
Last: (5i)(4i)=20i^2=20(-1)=-20
--------------------------------------------Combine like terms:
9-20-12i-15i
Simplify:
-11-27i
Now the bottom (-3-4i)(-3+4i):
F(OI)L (we are skipping OI)
First:-3(-3)=9
Last: -4i(4i)=-16i^2=-16(-1)=16
---------------------------------------------Combine like terms:
9+16=25
So our answer is ![\frac{-11-27i}{25}{/tex] unless you want to seprate the fraction too:[tex]\frac{-11}{25}+\frac{-27}{25}i](https://tex.z-dn.net/?f=%5Cfrac%7B-11-27i%7D%7B25%7D%7B%2Ftex%5D%20unless%20you%20want%20to%20seprate%20the%20fraction%20too%3A%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cfrac%7B-11%7D%7B25%7D%2B%5Cfrac%7B-27%7D%7B25%7Di)
We can find this using the formula: L= ∫√1+ (y')² dx
First we want to solve for y by taking the 1/2 power of both sides:
y=(4(x+1)³)^1/2
y=2(x+1)^3/2
Now, we can take the derivative using the chain rule:
y'=3(x+1)^1/2
We can then square this, so it can be plugged directly into the formula:
(y')²=(3√x+1)²
<span>(y')²=9(x+1)
</span>(y')²=9x+9
We can then plug this into the formula:
L= ∫√1+9x+9 dx *I can't type in the bounds directly on the integral, but the upper bound is 1 and the lower bound is 0
L= ∫(9x+10)^1/2 dx *use u-substitution to solve
L= ∫u^1/2 (du/9)
L= 1/9 ∫u^1/2 du
L= 1/9[(2/3)u^3/2]
L= 2/27 [(9x+10)^3/2] *upper bound is 1 and lower bound is 0
L= 2/27 [19^3/2-10^3/2]
L= 2/27 [√6859 - √1000]
L=3.792318765
The length of the curve is 2/27 [√6859 - √1000] or <span>3.792318765 </span>units.