22° you just subtract the numbers.
B. AC/EA = AB/DA because theyre equal slopes just different sizes
Answer:
a = 9
Step-by-step explanation:
First we need to add (x^2+3x) to (3x^2+ax),
(x^2+3x)+(3x^2+ax)
Expand
= x^2+3x+3x^2+ax
Collect the like terms
= x^2+3x^2+3x+ax
= 4x^2 + 3x + ax
= 4x^2+(3+a)x
Equate the solution to 4x^2+12x
4x^2+(3+a)x = 4x^2+12x
Comparing the like terms on both sides
(3+a)x =12x
3 + a = 12
a = 12 - 3
a = 9
Hence the value of a is 9
Answer:
The value of y is 847 for x=11
Step-by-step explanation:
It is given that y is directly proportional to the square of x
This can be written mathematically as:
Removing the proportionality symbol introduces a proportionality constant in the equation which is denoted by k
Given that "When x is 5, y is 175"
Putting the value of k
Now putting x = 11
Hence,
The value of y is 847 for x=11
<span><u><em>The correct answer is:</em></u>
180</span>°<span> rotation.
<u><em>Explanation: </em></u>
<span>Comparing the points D, E and F to D', E' and F', we see that the x- and y-coordinates of each <u>have been negated</u>, but they are still <u>in the same position in the ordered pair. </u>
<u>A 90</u></span></span><u>°</u><span><span><u> rotation counterclockwise</u> will take coordinates (x, y) and map them to (-y, x), negating the y-coordinate and swapping the x- and y-coordinates.
<u> A 90</u></span></span><u>°</u><span><span><u> rotation clockwise</u> will map coordinates (x, y) to (y, -x), negating the x-coordinate and swapping the x- and y-coordinates.
Performing either of these would leave our image with a coordinate that needs negated, as well as needing to swap the coordinates back around.
This means we would have to perform <u>the same rotation again</u>; if we began with 90</span></span>°<span><span> clockwise, we would rotate 90 degrees clockwise again; if we began with 90</span></span>°<span><span> counter-clockwise, we would rotate 90 degrees counterclockwise again. Either way this rotates the figure a total of 180</span></span>°<span><span> and gives us the desired coordinates.</span></span>