1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
3 years ago
15

Who would need to be consulted when specifying the requirements of a project?

Engineering
1 answer:
elena55 [62]3 years ago
3 0

Answer:A technology expert

Explanation:

You might be interested in
An air-standard Diesel cycle engine operates as follows: The temperatures at the beginning and end of the compression stroke are
Vika [28.1K]

This question is incomplete, the complete question is;

An air-standard Diesel cycle engine operates as follows: The temperatures at the beginning and end of the compression stroke are 30 °C and 700 °C, respectively. The net work per cycle is 590.1 kJ/kg, and the heat transfer input per cycle is 925 kJ/kg. Determine the a) compression ratio, b) maximum temperature of the cycle, and c) the cutoff ratio, v3/v2.

Use the cold air standard assumptions.

Answer:

a) The compression ratio is 18.48

b) The maximum temperature of the cycle is 1893.4 K

c) The cutoff ratio, v₃/v₂ is 1.946

Explanation:

Given the data in the question;

Temperature at the start of a compression T₁ = 30°C = (30 + 273) = 303 K

Temperature at the end of a compression T₂ = 700°C = (700 + 273) = 973 K

Net work per cycle W_{net = 590.1 kJ/kg

Heat transfer input per cycle Qs = 925 kJ/kg

a) compression ratio;

As illustrated in the diagram below, 1 - 2 is adiabatic compression;

so,

Tγ^{Y-1 = constant { For Air, γ = 1.4 }

hence;

⇒ V₁ / V₂ = ( T₂ / T₁ )^{\frac{1}{Y-1}

so we substitute

⇒ V₁ / V₂ = (  973 K / 303 K  )^{\frac{1}{1.4-1}

= (  3.21122  )^{\frac{1}{0.4}

= 18.4788 ≈ 18.48

Therefore, The compression ratio is 18.48

b) maximum temperature of the cycle

We know that for Air, Cp = 1.005 kJ/kgK

Now,

Heat transfer input per cycle Qs = Cp( T₃ - T₂ )

we substitute

925 = 1.005( T₃ - 700 )

( T₃ - 700 ) = 925 / 1.005

( T₃ - 700 ) = 920.398

T₃ = 920.398 + 700

T₃ = 1620.398 °C

T₃ = ( 1620.398 + 273 ) K

T₃ = 1893.396 K ≈ 1893.4 K

Therefore, The maximum temperature of the cycle is 1893.4 K

c)  the cutoff ratio, v₃/v₂;

Since pressure is constant, V ∝ T

So,

cutoff ratio S = v₃ / v₂  = T₃ / T₂

we substitute

cutoff ratio S = 1893.396 K / 973 K

cutoff ratio S = 1.9459 ≈ 1.946

Therefore, the cutoff ratio, v₃/v₂ is 1.946

8 0
3 years ago
Timescale limits knowledge for scientists because it is difficult for them to see much beyond their lifetimes. Question 1 option
vaieri [72.5K]

Answer:

I think true

Explanation:

Well I mean...we cant see the future. Certain things will be achieveable in different ganerations like going on mars

8 0
2 years ago
Deidre has just moved from the sales department into the finance department. On her first day in her new role, she receives an e
melisa1 [442]

Answer:

 d. The company uses role-based access control and her user account hasn't been migrated into the correct group(s) yet

Explanation:

Since Deidre is accessing her e-mail there appears to be nothing wrong with her account or password. Since her role is new, most likely the problem is associated with her new role.

3 0
3 years ago
If an airplane travels at a speed of 1120 km/hr at an altitude of 15 km, what is the required speed at an altitude of 8 km to sa
jek_recluse [69]

Answer:

1170 km/hr

Explanation:

Let's first state the formula to be used

c = √(KRT)

The temperature at an altitude of 15km is -56.5° C

Let's not convert this to °K, we have

-56.5° + 273.15 = 216.65° K

Also, the temperature at 8km is -36.9° C, on converting to °K we have

-36.9° + 273.15 = 236.25° K

Then again, we look for the speed at both 15 km and 8 km both of which are 295 m/s and 308 km

Finally, we use the mach similarity formula

(V/c) of 15km = (V/c) of 8km

V of 8km = c of 8km * (V/c) of 15km

V of 8km = 1170 km/hr

6 0
3 years ago
An excited electron in an Na atom emits radiation at a wavelength 589 nm and returns to the ground state. If the mean time for t
11Alexandr11 [23.1K]

Answer:   Inherent width in the emission line: 9.20 × 10⁻¹⁵ m or 9.20 fm

                length of the photon emitted: 6.0 m

Explanation:

The emitted wavelength is 589 nm and the transition time is ∆t = 20 ns.

Recall the Heisenberg's uncertainty principle:-

                                 ∆t∆E ≈ h ( Planck's Constant)

The transition time ∆t corresponds to the energy that is ∆E

E=h/t = \frac{(1/2\pi)*6.626*10x^{-34} J.s}{20*10x^{-9} } = 5.273*10x^{-27} J =  3.29* 10^{-8} eV.

The corresponding uncertainty in the emitted frequency ∆v is:

∆v= ∆E/h = (5.273*10^-27 J)/(6.626*10^ J.s)=  7.958 × 10^6 s^-1

To find the corresponding spread in wavelength and hence the line width ∆λ, we can differentiate

                                                    λ = c/v

                                                    dλ/dv = -c/v² = -λ²/c

Therefore,

      ∆λ = (λ²/c)*(∆v) = {(589*10⁻⁹ m)²/(3.0*10⁸ m/s)} * (7.958*10⁶ s⁻¹)

                                 =  9.20 × 10⁻¹⁵ m or 9.20 fm

     The length of the photon (<em>l)</em> is

l = (light velocity) × (emission duration)

  = (3.0 × 10⁸  m/s)(20 × 10⁻⁹ s) = 6.0 m          

                                                   

6 0
3 years ago
Other questions:
  • Consider a circular grill whose diameter is 0.3 m. The bottom of the grill is covered with hot coal bricks at 961 K, while the w
    10·1 answer
  • Please read
    6·1 answer
  • Calculate the electroosmotic velocity of an aqueous solution through a glass capillary 5 cm long with a 0.5 mm internal diameter
    11·1 answer
  • What kind of volcano usually forms over a hot spot?
    15·2 answers
  • While discussing run-flat tires: Technician A says that some are self-sealing tires and are designed to quickly and permanently
    15·1 answer
  • Air is to be heated steadily by an 8-kW electric resistance heater as it flows through an insulated duct. If the air enters at 5
    10·1 answer
  • Decide whether the function is an exponential growth or exponential decay function, and find the constant percentage rate of gro
    10·1 answer
  • Do you think the industrial revolution helped or hurt workers? Why?
    8·1 answer
  • Steven is starting a project that requires a specialized, experienced contractor. Which selection process is the most suitable f
    11·1 answer
  • The coefficient of static friction for both wedge surfaces is μw=0.4 and that between the 27-kg concrete block and the β=20° inc
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!