1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
QveST [7]
3 years ago
5

Suppose the distance between two cities on a map is 5.2 inches. The scale is 1 inch = 80 miles. What's the actual distance betwe

en the cities?
Mathematics
1 answer:
OleMash [197]3 years ago
8 0

Answer:

416 miles

Step-by-step explanation:

80x5.2=416    

You might be interested in
HELP NEEDED!!! 15POINTS FOR A ANSWER AND EXPLANATION! I cant figure this out help me please! Also no links.
artcher [175]

Answer:

Line I:y=5

Line m:y=_2×+5

Line n:y=×-1

Line p:×=_5

Step-by-step explanation:

Hope It Help

Brainliest Please

7 0
3 years ago
you invest $4500 into an interest earning account that compounds daily at 5%.How much will you have in 6 years.How much interest
Vlad [161]

Answer:

4500*1.05^(365*6) = 1.1422929e+50

7 0
3 years ago
Suppose the number of children in a household has a binomial distribution with parameters n=12n=12 and p=50p=50%. Find the proba
nadya68 [22]

Answer:

a) 20.95% probability of a household having 2 or 5 children.

b) 7.29% probability of a household having 3 or fewer children.

c) 19.37% probability of a household having 8 or more children.

d) 19.37% probability of a household having fewer than 5 children.

e) 92.71% probability of a household having more than 3 children.

Step-by-step explanation:

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

In this problem, we have that:

n = 12, p = 0.5

(a) 2 or 5 children

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 5) = C_{12,5}.(0.5)^{5}.(0.5)^{7} = 0.1934

p = P(X = 2) + P(X = 5) = 0.0161 + 0.1934 = 0.2095

20.95% probability of a household having 2 or 5 children.

(b) 3 or fewer children

P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.5)^{0}.(0.5)^{12} = 0.0002

P(X = 1) = C_{12,1}.(0.5)^{1}.(0.5)^{11} = 0.0029

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.0537

P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0002 + 0.0029 + 0.0161 + 0.0537 = 0.0729

7.29% probability of a household having 3 or fewer children.

(c) 8 or more children

P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 8) = C_{12,8}.(0.5)^{8}.(0.5)^{4} = 0.1208

P(X = 9) = C_{12,9}.(0.5)^{9}.(0.5)^{3} = 0.0537

P(X = 10) = C_{12,10}.(0.5)^{10}.(0.5)^{2} = 0.0161

P(X = 11) = C_{12,11}.(0.5)^{11}.(0.5)^{1} = 0.0029

P(X = 12) = C_{12,12}.(0.5)^{12}.(0.5)^{0} = 0.0002

P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) = 0.1208 + 0.0537 + 0.0161 + 0.0029 + 0.0002 = 0.1937

19.37% probability of a household having 8 or more children.

(d) fewer than 5 children

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.5)^{0}.(0.5)^{12} = 0.0002

P(X = 1) = C_{12,1}.(0.5)^{1}.(0.5)^{11} = 0.0029

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.0537

P(X = 4) = C_{12,4}.(0.5)^{4}.(0.5)^{8} = 0.1208

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0002 + 0.0029 + 0.0161 + 0.0537 + 0.1208 = 0.1937

19.37% probability of a household having fewer than 5 children.

(e) more than 3 children

Either a household has 3 or fewer children, or it has more than 3. The sum of these probabilities is 100%.

From b)

7.29% probability of a household having 3 or fewer children.

p + 7.29 = 100

p = 92.71

92.71% probability of a household having more than 3 children.

5 0
3 years ago
Estimate:<br> 19 + 15.76 =<br> ..
const2013 [10]
35, you would get exactly 34.76 but you round up since the number after the decimal is higher than 5
7 0
3 years ago
Whats the answer to this?<br><br><br> ‐13−23= ‐13 +-23
andrey2020 [161]

Answer:

-36

Step-by-step explanation:

‐13−23= ‐13 + (-23) =  -36

Both 13 and  23 have negative sign. So if two numbers have the same sign, we have to add and put the same sign.

6 0
3 years ago
Other questions:
  • What z-score value separates the top 10% of a normal distribution from the bottom 90%?​?
    11·1 answer
  • Steve earns $10.50 an hour working in a store. Last weekend
    15·1 answer
  • there are five boys and seven girls in a swimming class. a team of four will be selected at random from this class. what is the
    7·1 answer
  • Chad is planting a plant that is 4 inches tall. He wants the hole he is digging to be as deep as the plant is tall. What integer
    9·1 answer
  • Should be pretty easy to answer, I just need a refresher. I forgot how to solve for triangles...
    8·1 answer
  • A cherry tree is 6 feet tall a palm tree is 3 times as tall as the cherry tree Whuch model represents this problem
    15·1 answer
  • Rhythm review, what is Melody?
    10·1 answer
  • Do the following side lengths form a triangle?<br><br> 6, 18, 14
    10·1 answer
  • 6.005= as what percent
    15·2 answers
  • Hey can someone help me find the area pls
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!