We know that:

There is also an interesting property that relates the sine and the cosine of an angle:

We can find the cosine of theta using this equation:
![\begin{gathered} \cos ^2(\theta_1)=1-\sin ^2(\theta_1) \\ \cos (\theta_1)=\sqrt{1-\sin^2(\theta_1)} \\ \cos (\theta_1)=\sqrt[]{1-(-\frac{12}{13})^2} \\ \lvert\cos (\theta_1)\rvert=\sqrt[]{1-\frac{144}{169}}=\sqrt[]{\frac{25}{169}} \\ \lvert\cos (\theta_1)\rvert=\frac{5}{13} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ccos%20%5E2%28%5Ctheta_1%29%3D1-%5Csin%20%5E2%28%5Ctheta_1%29%20%5C%5C%20%5Ccos%20%28%5Ctheta_1%29%3D%5Csqrt%7B1-%5Csin%5E2%28%5Ctheta_1%29%7D%20%5C%5C%20%5Ccos%20%28%5Ctheta_1%29%3D%5Csqrt%5B%5D%7B1-%28-%5Cfrac%7B12%7D%7B13%7D%29%5E2%7D%20%5C%5C%20%5Clvert%5Ccos%20%28%5Ctheta_1%29%5Crvert%3D%5Csqrt%5B%5D%7B1-%5Cfrac%7B144%7D%7B169%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B25%7D%7B169%7D%7D%20%5C%5C%20%5Clvert%5Ccos%20%28%5Ctheta_1%29%5Crvert%3D%5Cfrac%7B5%7D%7B13%7D%20%5Cend%7Bgathered%7D)
Since theta is in the third quadrant then its cosine must be a negative number so:
Answer:
Step-by-step explanation:
Divide both sides by 1/3, which is equivalent to mulitplying by 3
x - 10 = -12
Add 10 to both sides
x = -2
Numbers between 30 and 60 with a ones digit of 3 are 33, 43, and 53. Both 43 and 53 are primes, so this answer is flawed.
Answer:
3 xhcni k ibohfpnconcfufuk
Answer:
8
Step-by-step explanation:
Rationalise the denominator by multiplying both the numerator and denominator by the radical on the denominator, that is

=
→ (
)² = 8
= 
= 4× 2
= 8