<span>Selection A is correct</span>
Answer:
x ≈ 3.1 ft
Step-by-step explanation:
The segment from the centre to the chord is a perpendicular bisector, thus
The triangle is right with base =
x
Applying Pythagoras' identity to the right triangle, then
(
x )² + 1.4² = 2.1²
x² + 1.96 = 4.41 ( subtract 1.96 from both sides )
x² = 2.45 ( multiply both sides by 4 )
x² = 9.8 ( take the square root of both sides )
x =
≈ 3.1 ft ( to the nearest tenth )
Answer:
12.4
Step-by-step explanation:
The distance between (7,21) and (-5,18)
d =sqrt( (-5-7)^2 + (18-21)^2)
= sqrt(( -12)^2 + (-3)^2)
= sqrt(144+9)
= sqrt(153)
=12.36931688
To the nearest tenth
12.4
Answer:
7.5
Step-by-step explanation:
Answer:
please let me know if you need anything else from Ghana and polyatomic element of surprise me if you need anything else<em> from</em><em> me</em><em> please</em><em> let</em><em> me</em><em> know</em><em> </em><em>h</em><em>ow</em><em> it</em><em> goes</em><em> and</em><em> if</em><em> you</em><em>'re</em><em> not</em><em> busy</em><em> I</em><em> can</em><em> get</em><em> a</em><em> ride</em><em> to</em><em> the</em><em> airport</em><em> on</em><em> Friday</em><em> and</em><em> polyatomic</em><em> element</em><em> of</em><em> surprise</em><em> me</em><em> if</em><em> you</em><em> need</em><em> anything</em><em> else</em><em> from</em><em> me</em><em> please</em><em> let</em><em> me</em><em> know</em><em> if</em><em> you</em><em> need</em><em> anything</em><em> else</em><em> from</em><em> me</em><em> please</em><em> let</em><em> me</em><em> know</em><em> if</em><em> you</em><em> need</em><em> anything</em><em> else</em><em> from</em><em> me</em><em> please</em> let me know if you need anything else from me please let me know if you need anything else from me please let me know if you need<em><u> anything</u></em><em><u> else</u></em><em><u> from</u></em><em><u> me</u></em><em><u> please</u></em><em><u> let</u></em><em><u> me</u></em><em><u> know</u></em><em><u> if</u></em><em><u> you</u></em><em><u> need</u></em><em><u> anything</u></em><em><u> else</u></em><em><u> from</u></em><em><u> me</u></em><em><u> please</u></em><em><u> let</u></em><em><u> me</u></em><em><u> know</u></em><em><u> if</u></em><em><u> you</u></em><em><u> need</u></em><em><u> anything</u></em><em><u> else</u></em><em><u> from</u></em><em><u> me</u></em><em><u> please</u></em>