<h2>
Answer:</h2>
∠LMN is a right angle
<h2>
Step-by-step explanation:</h2>
If we want to prove that two right triangles are congruent by knowing that the corresponding hypotenuses and one leg are congruent, we begin as follows:
- Since two legs are congruent and we know this by the hash marks, then the triangle ΔLKN is isosceles.
- By definition LN ≅ NK
- If ∠LMN is a right angle, then MN is the altitude of triangle ΔLKN
- Also MN is the bisector of LK, so KM ≅ ML
- So we have two right triangles ΔLMN and ΔKM having the same lengths of corresponding sides
- In conclusion, ΔLMN ≅ ΔKMN
Answer:
A) la que cuesta $1.89
B)$5.68
C)$5.68
Step-by-step explanation:
Answer:
Please check the explanation.
Step-by-step explanation:
We know that when a consistent system has infinite solutions, then the graphs of the equations are exactly the same. In other words, these equations are called dependent equations.
All points of dependent equations share the same slope and same y-intercept.
For example,
6x-2y = 18
9x-3y=27
represent the dependent equations.
Writing both equations in slope-intercept form
y=mx+c
where m is the slope and c is the y-intercept
Now
6x-2y=18
2y = 6x-18
Divide both sides by 2
y = 3x - 9
Thus, the slope = 3 and y-intercept = b = -9
now
9x-3y=27
3y = 9x-27
Divide both sides by 3
y = 3x - 9
Thus, the slope = 3 and y-intercept = b = -9
Therefore, both equations have the same slope and y-intercept. Their graphs are the same. Hence, they are called dependent equations.
Three and a half divided by seven-eighth equals seven over two times eight over seven equals fifty over fourteen equals four