Answer:
0.5?
Step-by-step explanation:
<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Thus ;

,♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Answer:
v = 6
Step-by-step explanation:
Solve for v:
-8 (8 v + 1) - 2 = -394
-8 (8 v + 1) = -64 v - 8:
-64 v - 8 - 2 = -394
Grouping like terms, -64 v - 8 - 2 = -64 v + (-8 - 2):
-64 v + (-8 - 2) = -394
-8 - 2 = -10:
-10 - 64 v = -394
Add 10 to both sides:
(10 - 10) - 64 v = 10 - 394
10 - 10 = 0:
-64 v = 10 - 394
10 - 394 = -384:
-64 v = -384
Divide both sides of -64 v = -384 by -64:
(-64 v)/(-64) = (-384)/(-64)
(-64)/(-64) = 1:
v = (-384)/(-64)
The gcd of -384 and -64 is -64, so (-384)/(-64) = (-64×6)/(-64×1) = (-64)/(-64)×6 = 6:
Answer: v = 6