H+20=35-4H
first, combine your like terms, which are the Hs
add the 4H to both sides, and you will get
5H+20=35
now subtract 20 from both sides, that will cancel out the 20 on the left and leave you with
5H=15
finally, divide both sides by 5 and you will get H=3.
I think the answer would be 1.
Answer:
see below
Step-by-step explanation:
The equation for half life is
n = no e ^ (-kt)
Where no is the initial amount of a substance , k is the constant of decay and t is the time
no = 9.8
1/2 of that amount is 4.9 so n = 4.9 and t = 100 years
4.9 = 9.8 e^ (-k 100)
Divide each side by 9.8
1/2 = e ^ -100k
Take the natural log of each side
ln(1/2) = ln(e^(-100k))
ln(1/2) = -100k
Divide each side by -100
-ln(.5)/100 = k
Our equation in years is
n = 9.8 e ^ (ln.5)/100 t)
Approximating ln(.5)/100 =-.006931472
n = 9.8 e^(-.006931472 t) when t is in years
Now changing to days
100 years = 100*365 days/year
36500 days
Substituting this in for t
4.9 = 9.8 e^ (-k 36500)
Take the natural log of each side
ln(1/2) = ln(e^(-36500k))
ln(1/2) = -36500k
Divide each side by -100
-ln(.5)/36500 = k
Our equation in years is
n = 9.8 e ^ (ln.5)/36500 d)
Approximating ln(.5)/365=-.00001899
n = 9.8 e^(-.00001899 d) when d is in days
Multiply those 2 numbers and divide that answer by 2