Answer:
a) Just add 1 square on the right and 1 square on top for figure 4. Add 1 more in each place for figure 5.
b) Each stage adds a square above and a square to the right. The pattern never decreases. This trend is shown by figures 1, 2, and 3.
c) Figure 0 would be a single square. Simply follow the pattern in reverse. As the figure number decreases, squares are removed from the right and the top rather than added.
<h2><u>
Answer:</u></h2>
To determine to measure of the unknown angle, be sure to use the total sum of 180°. If two angles are given, add them together and then subtract from 180°. If two angles are the same and unknown, subtract the known angle from 180° and then divide by 2.
<h3><u>Out of the four options, the letter B is a function.</u></h3>
A function cannot have an x value with two different listed y terms.
B is the only option that does not repeat x terms.
Using the diagonal dimension and the height we can solve for the diameter of the cylinder using the Pythagorean theorem.
x^2 + 9.5^2 = 19.3^2
x^2 + 90.25 = 372.49
x^2 = 372.49 - 90.25
x^2 = 282.24
x = √282.24
x = 16.8
Now we know the diamteer and height, we can calculate the volume using the formula V = pi * r^2 * h
r = 1/2 the diameter = 16.8/2 = 8.4
using 3.14 for pi
Volume = 3.14 * 8.4^2 * 9.5
V = 3.14 * 70.56 * 9.5
v = 3.14 * 670.32
v = 2104.8 cubic meters
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π and cos A = cos B · cos C
scratchwork:
A + B + C = π
A = π - (B + C)
cos A = cos [π - (B + C)] Apply cos
= - cos (B + C) Simplify
= -(cos B · cos C - sin B · sin C) Sum Identity
= sin B · sin C - cos B · cos C Simplify
cos B · cos C = sin B · sin C - cos B · cos C Substitution
2cos B · cos C = sin B · sin C Addition
Division
2 = tan B · tan C

<u>Proof LHS → RHS</u>
Given: A + B + C = π
Subtraction: A = π - (B + C)
Apply tan: tan A = tan(π - (B + C))
Simplify: = - tan (B + C)

Substitution: = -(tan B + tan C)/(1 - 2)
Simplify: = -(tan B + tan C)/-1
= tan B + tan C
LHS = RHS: tan B + tan C = tan B + tan C 