1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
3 years ago
6

Simplify 5(x + 3) - x + 2

Mathematics
2 answers:
mash [69]3 years ago
5 0

Answer:

4x+17

Step-by-step explanation:

5(x+3)-x+2

5x+15-x+2

4x+17

DIA [1.3K]3 years ago
3 0

Step-by-step explanation:

5(x + 3) - x + 2

Let's simplify step-by-step.

5(x+3)−x+2

Distribute:

=(5)(x)+(5)(3)+−x+2

=5x+15+−x+2

Combine Like Terms:

=5x+15+−x+2

=(5x+−x)+(15+2)

=4x+17

Answer:

=4x+17

You might be interested in
What is the slope of a line perpendicular to line B
NemiM [27]

Answer:


Step-by-step explanation:

Where is line B?

3 0
3 years ago
136% of what number is 204
svet-max [94.6K]
136/100 = 204/x
Cross multiply 204 with 100 and 136 with x, then divide by 136x.
20400/136x
X= 150.
I hope this helps.
8 0
4 years ago
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Which expression is equivalent to the sum
Furkat [3]

Answer:

B. 9(4+8)

Step-by-step explanation:

Start by simplifying the original expression:

36+72=108

Now, let's try each answer choice:

A. 18(2+3)

Add the numbers in the parentheses:

18(5)=90 --> wrong!

B. 9(4+8)

Add the numbers in the parentheses:

9(12)=108 --> correct!

C. 3(10+24)

Add the numbers in the parentheses:

3(34)=102 --> wrong!

D. 2(19+27)

Add the numbers in the parentheses:

2(46)=92 --> wrong!

Therefore the answer is B. 9(4+8)

4 0
3 years ago
5.1 kilograms = __grams<br> Answer here
kotykmax [81]
1 gram = .001 kg

5.1kg = 5100g
7 0
3 years ago
Other questions:
  • Solve the equation then check your solution 5p=140 <br> A)28<br> B)700<br> C)-28<br> D)26
    12·2 answers
  • When testing gas pumps for​ accuracy, fuel-quality enforcement specialists tested pumps and found that 1294 of them were not pum
    14·1 answer
  • What is the solution of the equation?
    8·1 answer
  • Sandy dropped a basketball from the top of her Mom's office building which is 72 meters tall. She discovered that the ball bounc
    15·1 answer
  • Domain and range of the following graph​
    12·1 answer
  • What is the product of (2x – 5)(2x + 5)?
    10·2 answers
  • 4
    9·1 answer
  • What is 1\3 \3 what is the answers
    15·1 answer
  • 2x - 3v = - 19<br> 5x + 2v = - 19<br><br> Solve the system using elimination. The solution it (x,y)
    7·1 answer
  • Jason won 115 super bouncy ballsplaying horseshoes at the county fair. At
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!