1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
3 years ago
7

Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)

Mathematics
1 answer:
sergiy2304 [10]3 years ago
3 0

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

You might be interested in
Please help ! As soon as possible!
Eduardwww [97]
The answer is $11.25 because 110-8.75÷9
7 0
3 years ago
Read 2 more answers
The Table below gives you The population of Texas since 1970. Find the average rate if change from 1970 to 1090
ruslelena [56]

Answer:

Average rate of change = 0.29 million per year

Step-by-step explanation:

Average rate of change in the population from year 1970 to year 1900 is given by the formula,

Average rate of change = \frac{\text{Population in year 1990-Population in year 1970}}{1990-1970}

                                        = \frac{17-11.2}{1990-1970}

                                        = \frac{5.8}{20}

                                        = 0.29 million per year

Therefore, average rate of change in the population from 1970 to 1990 will be 0.29 million per year.                        

8 0
3 years ago
Complete the missing steps to express in simplest radical form.
Natali [406]
1. yu take the first expression and win over the second
3 0
2 years ago
Need help with this ignore what a put in the box it isn’t right
Zarrin [17]

f=6cm\\g=8cm

Why?

The first thing we need to do is find the area of the triangle, we can to that by subtracting the area of ABCD from ACBE, then, we can use the formulas to calculate the area for both triangle and rectangle to find "f" and "g".

Calculating we have:

TriangleArea=ABCE-ABCD\\\\TriangleArea=60cm^{2}-48cm^{2}=12cm^{2}

Now, we can calculate "f" by using the formula to calculate the area of the triangle:

TriangleArea=\frac{b*h}{2}\\\\TriangleArea=\frac{f*4cm}{2}\\\\12cm^{2}*2=f*4cm\\\\\frac{24cm^{2}}{4cm}=f\\\\f=6cm

Now, finding "g" by using the formula to calculate the area of the rectangle, we have:

RectangleArea=ABCD\\\\ABCD=Base*Height\\\\48cm^{2}=base*6cm\\\\base=g=\frac{48cm^{2}}{6cm}=8cm

Hence, we have that:

f=6cm\\g=8cm

Have a nice day!

8 0
3 years ago
The management team of a company consists of 25 people, 60% are women and the manager knows that 5 women and 3 men do not speak
Andrei [34K]
There is a 68% probability that the manager chooses someone who speaks Spanish.

There are 8 people that don't know Spanish. That leaves 17 people that do speak Spanish.
25 - 8 = 17

17 out of 25 is 68%
8 0
4 years ago
Other questions:
  • Please help meeeeeeeeeee
    10·1 answer
  • Which is 10^-5 written in standard form?
    11·2 answers
  • How many students spent at least six hours of homework per week
    11·1 answer
  • the vertices of triangle PQR are P(-3, 8), Q(-6, -4), and R(1, 1). If you reflect triangle PQR across the x-axis, what will be t
    11·1 answer
  • Dpoint<br> How does the calculator get 48.8?<br><br> mean ( 45, 80, 15, 10, 94)<br> 48.8
    11·1 answer
  • Given: ∆MNP, PM = 8 m∠P = 90°, m∠N = 58° Find: Perimeter of ∆MNP
    12·1 answer
  • The sum of the three EXTERIOR angle measures of a triangle is _________
    5·2 answers
  • Me puedes ayudar a resolberla mas tardar a las 3:30​
    5·1 answer
  • Help pleaseeeee????????????
    5·1 answer
  • Identify the numbers that are located to the right of -4 1/3 on a horizontal number line
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!