Answer: "fungus" / "fungi" .
________________________________________
Answer:
they bind to protein-coupled transmembrane receptors with higher complexity than those found in prokaryotes
Explanation:
G-proteins are proteins found inside the cells that function as molecular switches which are activated by binding to guanosine triphosphate (GTP), while they are inactive by binding to guanosine diphosphate (GDP). The G-proteins bind to G-protein-coupled transmembrane receptors (GPCRs) in the cytoplasmic region. The GPCRs are a very diverse group of proteins that are activated by extracellular molecules ranging from small peptides to large proteins, including pheromones, neurotransmitters, light-sensitive compounds, etc, thereby allowing them to respond to diverse stimuli from the extracellular environment. In consequence, it is reasonable to suppose that the signaling pathways in which G proteins are involved have a higher complexity level than those observed in primitive prokaryotic organisms.
Answer:50% chance possible offspring
Explanation:
Answer:
RNAs and proteins can bind via electrostatic interactions, hydrophobic interactions, Hydrogen bonding interactions and base stacking interactions
Explanation:
Proteins bind to nucleic acids (i.e., both DNA and RNA) through different types of interactions:
- electrostatic interactions, also known as van der Waals interactions, refer to attractive/repulsive interactions between molecules depending on their electric charges.
- hydrophobic interactions, i.e., interactions between nonpolar molecules and water molecules
- Hydrogen bonding interactions resulting from the interaction between a hydrogen (H) atom that bind to an electronegative atom (e.g., N, O, F, etc), and another electronegative atom.
- base stacking interactions that result from the arrangement of RNA nucleotides
In this case, it is also important to highlight that the interaction will depend on the specific tertiary structure of ribosomal proteins and ribosomal RNAs (rRNAs).