5 1/4 is the answer hope this helps
Find the critical points of f(y):Compute the critical points of -5 y^2
To find all critical points, first compute f'(y):( d)/( dy)(-5 y^2) = -10 y:f'(y) = -10 y
Solving -10 y = 0 yields y = 0:y = 0
f'(y) exists everywhere:-10 y exists everywhere
The only critical point of -5 y^2 is at y = 0:y = 0
The domain of -5 y^2 is R:The endpoints of R are y = -∞ and ∞
Evaluate -5 y^2 at y = -∞, 0 and ∞:The open endpoints of the domain are marked in grayy | f(y)-∞ | -∞0 | 0∞ | -∞
The largest value corresponds to a global maximum, and the smallest value corresponds to a global minimum:The open endpoints of the domain are marked in grayy | f(y) | extrema type-∞ | -∞ | global min0 | 0 | global max∞ | -∞ | global min
Remove the points y = -∞ and ∞ from the tableThese cannot be global extrema, as the value of f(y) here is never achieved:y | f(y) | extrema type0 | 0 | global max
f(y) = -5 y^2 has one global maximum:Answer: f(y) has a global maximum at y = 0
You can only cut down a integer number of trees. So you might look at a few integer values for x. As x get large the –x4 term dominates the expression for big losses. x = 0 is easy P(x) = -6. Without cutting any trees you have lost money Put x = 1 and you get for the terms in order -1 + 1 + 7 -1 -6 = 0. So P(x) crosses zero just before you cut the first tree. So you make a profit on only 1 tree. However when x=10 you are back into no profit. So compute a few values for x = 1,2,3,4,5,6,7,8,9.
Radical form for 112 would be 4{7 and then I think you can just search up how to reduce the 4 to 7 i don’t have the symbol btw
Answer:
19
Step-by-step explanation:
