Answer:
D
Explanation:
The amount of energy released or absorbed is equal the product of the mass, the specific heat capacity and the temperature change. The temperature change being the difference between the final and initial temperature.
Q = mc∆T
Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/g∙K)
∆ is a symbol meaning "the change in" ∆T = change in temperature (Kelvins, K)
From the data provided in the question, we can deduce that:
Q = 16.7KJ = 16,700J
m = 225g
c = 1.74J/g.k
For the temperature, let the final temperature be f. This means our ∆T = f - 20
16,700 = 225 * 1.74 * (f - 20)
16700 = 391.5 (f - 20)
f - 20 = 16700/391.5
f - 20 = 42.7
f = 20 + 42.7 = 62.7
Hence the final temperature is 62.7 degrees Celsius
<span>Rubidium and cesium have similar chemical properties because in the ground state the atoms of both elements each have one electron in the outermost shell. The correct option is A. The two elements belong to group one of the periodic table; all elements in this group have only one electron in their outmost shell which they easily give away to other elements during chemical reactions in order to attain octet structure.</span>
Yes because water turns into vapor
Answer:
The answer is
<h2>1, 214, 285.71 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of gas = 8.5 × 10^9 g
But 1 L = 1000 mL
So 7 L = 7000 mL
volume = 7000 mL
So the density of the gas is

We have the final answer as
1, 214, 285.71 g/mL
Hope this helps you