The inputs of photosynthesis are light energy, and matter in the form of water absorbed through the roots, and carbon dioxide absorbed through the leaves.
Therefore an input of photosynthesis from the choices given is,
Sunlight
Taking into account the reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
Ca₃P₂ + 6 H₂O → 3 Ca(OH)₂ + 2 PH₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Ca₃P₂:1 mole
- H₂O: 6 moles
- Ca(OH)₂: 3 moles
- PH₃: 2 moles
The molar mass of the compounds is:
- Ca₃P₂: 182 g/mole
- H₂O: 18 g/mole
- Ca(OH)₂: 74 g/mole
- PH₃: 34 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- Ca₃P₂: 1 mole ×182 g/mole= 182 grams
- H₂O: 6 moles× 18 g/mole= 108 grams
- Ca(OH)₂: 3 moles ×74 g/mole= 222 grams
- PH₃: 2 moles ×34 g/mole= 68 grams
<h3>Correct statements</h3>
Then, by reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
Learn more about the reaction stoichiometry:
<u>brainly.com/question/24741074</u>
<u>brainly.com/question/24653699</u>
Answer:
option B is correct.
Y is a mixture in the picture.
Explanation:
Different types of substances combine physically and form a mixture.
Mixture formed by the combination of two or more substances that that combine in same physical state.
For example mixture of copper sulphate and solid chloride in dry form and that will look like white and blue crystal in a mixture.
The picture Z showing dots of same color and is not a mixture, while picture Y shows dots of different colors clearly indicating that it is picture for mixture.
Answer:
The magnesium will burn until consumed entirely. There is much more oxygen available in the atmosphere than needed to consume the magnesium. Thus the magnesium is the limiting reactant because it determines the amount of product formed.
Explanation:
Mg produces less amount of MgO than O2; therefore Mg is the limiting reagent. O2 produces more amount of MgO than Mg; therefore O2 is the excess reagent.