Answer:
u8uij
Step-by-step explanation:
jbjkh
Answer:
x > -5
Step-by-step explanation:
For this equation, let b equal the cost per box.
b=$100/5
(AAA) Corresponding angles are congruent.
Therefore, the sides of the triangles are proportional:
cross multiply
use distributive property
subtract 100 from both sides
divide both sides by 100

--------------------------------------------------------------------------------------------
(SAS)
If two sides and the included angle of one triangle are equal to the corresponding sides and angle of another triangle, the triangles are congruent.
Therefore we have the equation:

The perimeter of △PQR:

Substitute the value of y to the expression:

Answer:
See answer below
Step-by-step explanation:
The statement ‘x is an element of Y \X’ means, by definition of set difference, that "x is and element of Y and x is not an element of X", WIth the propositions given, we can rewrite this as "p∧¬q". Let us prove the identities given using the definitions of intersection, union, difference and complement. We will prove them by showing that the sets in both sides of the equation have the same elements.
i) x∈AnB if and only (if and only if means that both implications hold) x∈A and x∈B if and only if x∈A and x∉B^c (because B^c is the set of all elements that do not belong to X) if and only if x∈A\B^c. Then, if x∈AnB then x∈A\B^c, and if x∈A\B^c then x∈AnB. Thus both sets are equal.
ii) (I will abbreviate "if and only if" as "iff")
x∈A∪(B\A) iff x∈A or x∈B\A iff x∈A or x∈B and x∉A iff x∈A or x∈B (this is because if x∈B and x∈A then x∈A, so no elements are lost when we forget about the condition x∉A) iff x∈A∪B.
iii) x∈A\(B U C) iff x∈A and x∉B∪C iff x∈A and x∉B and x∉C (if x∈B or x∈C then x∈B∪C thus we cannot have any of those two options). iff x∈A and x∉B and x∈A and x∉C iff x∈(A\B) and x∈(A\B) iff x∈ (A\B) n (A\C).
iv) x∈A\(B ∩ C) iff x∈A and x∉B∩C iff x∈A and x∉B or x∉C (if x∈B and x∈C then x∈B∩C thus one of these two must be false) iff x∈A and x∉B or x∈A and x∉C iff x∈(A\B) or x∈(A\B) iff x∈ (A\B) ∪ (A\C).