d. both a relation and a function:
Given:
Mark records his science scores in each monthly assessment over a period of 5 months. In the first assessment he scores 76%. In the second assessment he scores 73%. After that, his scores keep increasing by 2% in every assessment.
x represents the number of assessments since he starts recording and y represents the scores in each assessment.
In order for a relation to be a function the association has to be unambiguous that means that for a given input only one output can exist.If an input can have two or more outputs then you cannot determine which is the correct output for that input.
In the given situation:
x is the input that is number of assessments since mark starts recording the scores so there is only one assessment no repeating.so there is only one output.
Hence the relation is a function.
Learn more about the function here:
brainly.com/question/5975436
#SPJ1
Answer:
y=1x-5
Step-by-step explanation:
Question options:
A. He should report them directly on form 1040
B. He should report them on form 8949 and then on schedule D
C. He should report them on schedule D
D. He is not required to report them until he sells the underlying securities
Answer:
B. He should report them on form 8949 and then on schedule D
Explanation:
John has shares which have capital gains from a mutual fund and a brokerage account. In order to report his taxes, he would need to use the Schedule D(form 1040) for his mutual fund capital gains and the form 8949 for his brokerage capital gains. The brokerage capital gains is then transferred to schedule D.
Answer:
24 3/4
Step-by-step explanation:
multiply 4 1/2 times 1/2 to get your answer..
Note: Consider we need to find the vertices of the triangle A'B'C'
Given:
Triangle ABC is rotated 90 degrees clockwise about the origin to create triangle A'B'C'.
Triangle A,B,C with vertices at A(-3, 6), B(2, 9), and C(1, 1).
To find:
The vertices of the triangle A'B'C'.
Solution:
If triangle ABC is rotated 90 degrees clockwise about the origin to create triangle A'B'C', then

Using this rule, we get



Therefore, the vertices of A'B'C' are A'(6,3), B'(9,-2) and C'(1,-1).