Answer:
Sabemos que:
L es el largo de la avenida.
En la primer etapa se asfalto la mitad, L/2, entonces lo que queda por asfaltar es:
L - L/2 = L/2.
En la segunda etapa se asfalto la quinta parte, L/5, entonces lo que queda por asfaltar es:
L/2 - L/5 = 5*L/10 - 2*L/10 = (3/10)*L
En la tercer etapa se asfalto la cuarta parte del total, L/4, entonces lo que queda por asfaltar es:
(3/10)*L - L/4 = 12*L/40 - 10L/40 = (2/40)*L
Y sabemos que este ultimo pedazo que queda por asfaltar es de 200m:
(2/40)*L = 200m
L = 200m*(40/2) = 4,000m
Answer:
-1/6
Step-by-step explanation:
(10 - 8)/(-21 + 9)= 12/-12= -1
y - 8 = -1(x + 9)
y - 8 = -x - 9
y = -x - 1
The two lines with arrows are parallel, which means angles A and B are supplementary.
So we have
A + B = 180º
(6<em>x</em> - 35)º + (3<em>x</em> + 53)º = 180º
(9<em>x</em> + 18)º = 180º
(9<em>x</em>)º = 162º
<em>x</em> = 18
This means angle A has measure
A = (6<em>x</em> - 35)º = 73º
Answer:
Step-by-step explanation: This is the quadratic function:
h(x)=ax²+bx+c
We have two points:
(1,58)
(2,112)
Now, we calculate this quadratic funtion.
we assume that h(0)=0
Therefore:
a(0)²+b(0)+c=0
c=0
(1,58)
a(1)²+b(1)=58
a+b=58 (1)
(2,112)
a(2)²+b(2)=112
4a+2b=112
2a+b=56 (1)
With the equations (1) and (2) we make a system of equations:
a+b=58
2a+b=56
we can solve this system of equations by reduction method.
-(a+b=58)
2a+b=56
---------------------
a=-2
-2(a+b=58)
2a+b=56
-------------------
-b=-60 ⇒ b=60
The function is:
h(x)=ax²+bx+c
h(x)=-2x²+60x
Now find the height, in feet, of the rock after 10 seconds in the air.
h(10)=-2(10)²+60(10)
h(10)=-200+600=400
Answer: 400 ft.
Answer:
x = 4.6439
Step-by-step explanation:
2^x =25
Take the log of each side
log 2^x = log 25
We know that log a^b = b log a
x log 2 = log 25
Divide each side by log 2
x = log 25 / log 2
x =4.643856
Rounding to 4 decimal places
x = 4.6439