Answer:
A class system is a more smooth system, caste is more of a system that changes consistently.
Explanation:
"Class system is typically more fluid than the caste system or the other types of stratification and the boundaries between classes are never clear-cut. Caste system is static whereas the class system is dynamic. ... In the caste system, individual mobility from one caste to another is impossible."
Answer:
Bilateral symmetry
Explanation:
the property of being divisible into symmetrical halves on either side of a unique plane. I am pretty sure itis this one, hope i helped you!
Answer:
DNA and gesnes and a great time at the end result is a great day to be a great
Explanation:
cells outside and from the bottom of the year and a half years of age and the other day and I have a great day to be a great day to be a great day to be a great day for me and I am a very happy to see the new album and a great
Single-cell RNA-sequencing (scRNA-seq) provides the chance to analyze heterogeneous cellular compositions and probe the patterns of gene expression that are unique to each cell type under various circumstances. However, batch effects like lab setups and individual variability make it difficult to use them in cross-condition designs.
<h3>What is Single-cell transcriptomes ?</h3>
In single-cell transcriptomics, the messenger RNA levels of hundreds to thousands of genes are simultaneously measured to assess the degree of gene expression in individual cells within a particular population.
<h3>Advantages : </h3>
• Integrated protocol proceeds directly from whole cells and preserves sample integrity.
• High resolution analysis enables discovery of cellular differences typically hidden by bulk sampling methods.
• Robust transcriptome analysis down to single-cell input levels for high-quality samples.
To know more about Single-cell transcriptome please click here : brainly.com/question/28187739
#SPJ4
Answer: 1/16, or approximately 6.25% (see explanation below)
Explanation:
Answering this question requires two steps.
First, we need to figure out the probability that this couple will have a child with albinism in the first place. We know the following:
- Both parents are unaffected.
- The couple has already had one affected child.
- Albinism follows an autosomal recessive inheritance pattern.
Let ( M = normal gene ) and ( m = mutated gene ). Since the condition is recessive, the affected child can be assumed to have a “mm” genotype. Barring the possibility of a de novo mutation (which are assumed to be rare), the affected child must have inherited one ”m” allele from each parent. Since both of them are unaffected, however, we can assume that they are both carriers (genotype “Mm”). In conclusion, 1/4 of their offspring (25%) <em>for any given pregnancy</em> may be expected to have albinism. See the resulting Punnett square:
<u> | M | m </u>
<u>M | MM | Mm </u>
<u>m | Mm | mm </u>
Note that the question asks about the probability that not one but two consecutive births result in affected children. Since it can be assumed that both events are independent (meaning: the outcome of a pregnancy does not influence the outcome of following ones), we may apply the rule of multiplication for probabilities. The final answer is therefore 1/4 * 1/4 = 1/16.