Answer:
y = 2x(x - 21)
Step-by-step explanation:
The given quadratic function y = -40x + 2x^2 - 2x
This can be rearranged as
y = 2x^2 - 2x - 40x
Here the Greatest Common Factor is 2x, we can take it out and write the remaining term in parenthesis.
y = 2x(x - 1 -20)
y = 2x(x - 21)
That's the answer.
Hope this will helpful.
Thank you.
The solutions to the given system of equations is (0, -6) and (1, -5)
<h3>Simultaneous equations</h3>
From the question, we are to determine the solutions to the given system of equations
The equations are
x − y = 6 --------- (1)
y = x² −6 ---------- (2)
From equation (1)
x - y = 6
∴ x = 6 + y ------- (3)
Substitute into equation (2)
y = x² −6
y = (6+y)² −6
y = (6+y)(6+y) -6
y = 36 + 6y + 6y +y² -6
y = 36 + 12y + y² - 6
Simplifying
y² + 12y - y + 30 = 0
y² + 11y + 30 = 0
Solve quadratically
y² + 11y + 30 = 0
y² + 6y + 5y + 30 = 0
y(y +6) +5 (y +6) = 0
(y + 5)(y + 6) = 0
y + 5 = 0 OR y + 6 = 0
y = -5 OR y = -6
Substitute the values of y into equation (3)
x = 6 + y
When y = -5
x = 6 + (-5)
x = 6 -5
x = 1
When y = -6
x = 6 + (-6)
x = 6 -6
x = 0
∴ When x = 0, y = -6 and when x = 1, y = -5
Hence, the solutions to the given system of equations is (0, -6) and (1, -5)
Learn more on Solving simultaneous equations here: brainly.com/question/16863577
#SPJ!
I think it’s y= -2/2x +2? Something like that I may be wrong lolz
Answer:
∠MNP is your answer
Step-by-step explanation:
Note the angle and the order it is said. It is ∠ABC, which means the double line side, one curve line angle, and then triple line side.
Now look at the second triangle, the same double line side (NM), one curve line angle (∠N), and triple line side (NP)
Put them together: ∠MNP is your answer
~
Volume is legnth times widht times height
lenght=2x-1
width=x-2
height=x+1
multiply all together
use mass distributive property
distributive=a(b+c)=ab+ac so extending that
(a+c)(c+c)=(a+b)(c)+(a+b)(d) then keep distributing so
(2x-1)(x-2)(x+1)
do each one seperately
do the first two first and put the other one (x+1) to the side for later
(2x-1)(x-2)=(2x-1)(x)+(2x-1)(-2)=(2x^2-x)+(-4x+2)=2x^2-5x+2
then do the other one
(x+1)(2x^2-5x+2)=(x)(2x^2-5x+2)+(1)(2x^2-5x+2)=(2x^3-5x^2+2x)+(2x^2-5x+2)=2x^3-3x^2-3x+2
the lasst form is 2x^3-3x^2-3x+2