Using the properties of operations the given pair of expressions are not equivalent
<u>Solution:</u>
Given that, we have to use the properties of operations to determine if each pair of expressions is equivalent
<em><u>And the two expressions are:</u></em>

Now, we know that, there are four (4) basic properties of operations:
<em>Commutative, Associative, Distributive and Identity. These properties only apply to the operations of addition and multiplication.</em>
So, if we observe we can apply distributive property on 1st expression
The distributive property of multiplication states that when a number is multiplied by the sum of two numbers, the first number can be distributed to both of those numbers and multiplied by each of them separately, then adding the two products together for the same result as multiplying the first number by the sum.

Here the resulting expression is 2 – x and it is not equivalent to 2 – 2x
Hence, the given two expressions are not equal.
18 + 81 = 9(x²<span> + 6x + 9)
</span><span>11 = (x + 3)</span>²
When we are completing the square, we are going to move the value of c across the equals. We will do that by adding, and end up with
18=9(x²+6x)
We take the value of b (the coefficient of x), divide it by 2 and square it:
(6/2)²=3²=9
This is the value that completes the square. However, since the entire square is multiplied by 9, this value must be multiplied by 9 before we can add it across the equals:
18+9(9) = 9(x²+6x+9)
18+81=9(x²+6x+9)
99=9(x²+6x+9)
Dividing both sides by 9, we have:
11=x²+6x+9
11=(x+3)²
There’s a 2/6 chance that the science project would be first
Step-by-step explanation:
9x^3+6x^2-3x
Cannot be simplified because there are no like terms but can be factored as
=3x(3x−1)(x+1)
Answer:
Part 1
FED=60
DEN=120
Part 2
AG=30
Step-by-step explanation: