Answer:
102
Step-by-step explanation:
Since we know that the numbers are two consecutive even numbers, we can write an equation like this where n represents the 2 numbers.
n + (n+2) = 206
Simplify the left side:
n + (n+2) = 206 -----> 2n+2 = 206
Subtract 2 from both sides:
2n = 206-2 -----> 2n = 204
Now divide 204 by 2:
n = 204/2 -----> n = 102
Answer:
I have no idea
Step-by-step explanation:
people are weird
The temperature of the ice cream 2 hours after it was placed in the freezer is 37.40 °C
From Newton's law of cooling, we have that

Where





From the question,


∴ 

Therefore, the equation
becomes

Also, from the question
After 1 hour, the temperature of the ice-cream base has decreased to 58°C.
That is,
At time
, 
Then, we can write that

Then, we get

Now, solve for 
First collect like terms


Then,


Now, take the natural log of both sides


This is the value of the constant 
Now, for the temperature of the ice cream 2 hours after it was placed in the freezer, that is, at 
From

Then






Hence, the temperature of the ice cream 2 hours after it was placed in the freezer is 37.40 °C
Learn more here: brainly.com/question/11689670
Perhaps the easiest way to find the midpoint between two given points is to average their coordinates: add them up and divide by 2.
A) The midpoint C' of AB is
.. (A +B)/2 = ((0, 0) +(m, n))/2 = ((0 +m)/2, (0 +n)/2) = (m/2, n/2) = C'
The midpoint B' is
.. (A +C)/2 = ((0, 0) +(p, 0))/2 = (p/2, 0) = B'
The midpoint A' is
.. (B +C)/2 = ((m, n) +(p, 0))/2 = ((m+p)/2, n/2) = A'
B) The slope of the line between (x1, y1) and (x2, y2) is given by
.. slope = (y2 -y1)/(x2 -x1)
Using the values for A and A', we have
.. slope = (n/2 -0)/((m+p)/2 -0) = n/(m+p)
C) We know the line goes through A = (0, 0), so we can write the point-slope form of the equation for AA' as
.. y -0 = (n/(m+p))*(x -0)
.. y = n*x/(m+p)
D) To show the point lies on the line, we can substitute its coordinates for x and y and see if we get something that looks true.
.. (x, y) = ((m+p)/3, n/3)
Putting these into our equation, we have
.. n/3 = n*((m+p)/3)/(m+p)
The expression on the right has factors of (m+p) that cancel*, so we end up with
.. n/3 = n/3 . . . . . . . true for any n
_____
* The only constraint is that (m+p) ≠ 0. Since m and p are both in the first quadrant, their sum must be non-zero and this constraint is satisfied.
The purpose of the exercise is to show that all three medians of a triangle intersect in a single point.
Answer:
if you go on https://www.geogebra.org/ it will graph it for you
Step-by-step explanation: