Answer:
D. (-2, -6) and (5,15)
Step-by-step explanation:
When you set the equations together, you get x^2-3x-10. You then set this equation equal to zero and get (x-5)(x+2) or x=-2 and x=5. Then, plug these x-values into each equation to get your y-values.
(a) The measure of the indicated angle for figure 1 is 48⁰.
(b) The measure of the indicated angle for figure 2 is 42⁰.
<h3>Measure of the indicated angle</h3>
The measure of the indicated angles can be calculated as follows;
<h3>Figure 1</h3>
sinθ = opp/hypo
sinθ = 72/97
sinθ = 0.7423
θ = sin⁻¹(0.7423)
θ = 47.9⁰ ≈ 48⁰
<h3>Figure 2</h3>
sinθ = 65/97
sinθ = 0.6701
θ = sin⁻¹(0.6701)
θ = 42.1⁰ ≈ 42⁰
Learn more about angles here: brainly.com/question/25770607
#SPJ1
Answer:
Step-by-step explanation:iii
(1)Identify the surface whose equation is r = 2cosθ by converting first to rectangular coordinates...(2)Identify the surface whose equation is r = 3sinθ by converting first to rectangular coordinates...(3)Find an equation of the plane that passes through the point (6, 0, −2) and contains the line x−4/−2 = y−3/5 = z−7/4...(4)Find an equation of the plane that passes through the point (−1,2,3) and contains the line x+1/2 = y+2/3 = z-3/-1...(5)Find a) the scalar projection of a onto b b) the vector projection of a onto b given = 〈2, −1,3〉 and = 〈1,2,2〉...(6)Find a) the scalar projection of a onto b b) the vector projection of a onto b given = 〈2,1,4〉 and = 〈3,0,1〉...(7)Find symmetric equations for the line of intersection of the planes x + 2 y + 3z = 1 and x − y + z = 1...(8)Find symmetric equations for the line of intersection of the planes x + y + z = 1 and x + 2y + 2z = 1...(9)Write inequalities to describe the region consisting of all points between, but not on, the spheres of radius 3 and 5 centered at the origin....(10)Write inequalities to describe the solid upper hemisphere of the sphere of radius 2 centered at the origin....(11)Find the distance between the point (4,1, −2) and the line x = 1 +t , y = 3 2−t , z = 4 3−t...(12)Find the distance between the point (0,1,3) and the line x = 2t , y = 6 2−t , z = 3 + t...(13)Find a vector equation for the line through the point (0,14, −10) and parallel to the line x=−1+2t, y=6-3t, z=3+9t<span>...</span>