Explanation:
Unclear question. But I inferred this to be clear rendering of your question;
1) It is considered a circle and a certain point. The expressions dot inside the circle, dot on circle, or dot outside the text describe the position of a dot relative to a circle. In figure 2 are drawn: a circle C of center O, points on the circle, points outside the circle and points inside the circle. a) Name the points inside the circle; b) Name the points that belong to the circle; c) Name the points outside the circle.
2) Consider any point P and a circle C of center O and radius r. Compare the distance OP with the radius of the circle if: a) The point is inside the circle; b) The point is on the circle; c) The point is outside the circle.
FIRST PARTWe need to find sin α, cos α, and cos β, tan β
α and β is located on third quadrant, sin α, cos α, and sin β, cos β are negative
Determine ratio of ∠α
Use the help of right triangle figure to find the ratio
tan α = 5/12
side in front of the angle/ side adjacent to the angle = 5/12
Draw the figure, see image attached
Using pythagorean theorem, we find the length of the hypotenuse is 13
sin α = side in front of the angle / hypotenuse
sin α = -12/13
cos α = side adjacent to the angle / hypotenuse
cos α = -5/13
Determine ratio of ∠β
sin β = -1/2
sin β = sin 210° (third quadrant)
β = 210°

SECOND PARTSolve the questions
Find sin (α + β)
sin (α + β) = sin α cos β + cos α sin β



Find cos (α - β)
cos (α - β) = cos α cos β + sin α sin β



Find tan (α - β)


Simplify the denominator


Simplify the numerator


Simplify the fraction

Answer:
can u zoom in ?????????????
Step-by-step explanation:
Answer:
Correct answer: ∝ = 18.43°
Step-by-step explanation:
Given coordinates represent one vector in x-y plane, let be v.
v = 3i +1j = xi + yj => x = 3 and y = 1
The angle that this vector builds with the positive direction to the x axis will be found using the tangent.
∝ = tan⁻¹ y/x = tan⁻¹ 1/3 = tan⁻¹ 0.333 = 18.43°
∝ = 18.43°
God is with you!!!