Answer:
The 98% confidence interval estimate of the proportion of adults who use social media is (0.56, 0.6034).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
Of the 2809 people who responded to survey, 1634 stated that they currently use social media.
This means that 
98% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 98% confidence interval estimate of the proportion of adults who use social media is (0.56, 0.6034).
31 quarts, because there are 4 quarts in a gallon
First, let's count:
there are 26 possible outcomes for E1 (black card)
there are 4x9 = 36 possible outcomes for E2, to pick a numbered card (any color)
there are 2x9 =18 possible outcomes for E1 (black) AND E2 (numbered, spade + clower)
the probability of E1 AND E2 is the ratio of the count of possible outcomes for E1 + E2 and the count of all possible outcomes (52 choices to pick a card from the deck):
P(E1 and E2) = 18/52 (34.6%)
And as asked:
P(E1) = 26/52 = 1/2 (50%)
P(E2) = 36/52 = 9/13 (69.2%)
Answer: 0.2401
Step-by-step explanation:
The binomial distribution formula is given by :-

where P(x) is the probability of x successes out of n trials, p is the probability of success on a particular trial.
Given : The probability that a randomly chosen citizen-entity of Cygnus is of pension age† is approximately: p =0.7.
Number of trials : n= 4
Now, the required probability will be :

Thus, the probability that, in a randomly selected sample of four citizen-entities, all of them are of pension age =0.2401